
Trends
With increasing use of computational
models to understand human beha-
vior, scientists have begun to model
the dynamics of subjective states such
as mood.

Recent data suggest that mood
reflects the cumulative impact of differ-
ences between reward outcomes and
expectations.

Behavioral and neural findings suggest
that mood biases the perception of
reward outcomes such that outcomes
are perceived as better when one is in a
good mood relative to when one is in a
bad mood.

These two lines of research establish a
bidirectional interaction between mood
and reinforcement learning, which may
play an important adaptive role in
healthy behavior, and whose dysfunc-
tion might contribute to psychiatric
disorders.
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Experiences affectmood, which in turn affects subsequent experiences. Recent
studies suggest two specific principles. First, mood depends on how recent
reward outcomes differ from expectations. Second, mood biases the way we
perceive outcomes (e.g., rewards), and this bias affects learning about those
outcomes. We propose that this two-way interaction serves to mitigate ineffi-
ciencies in the application of reinforcement learning to real-world problems.
Specifically, we propose that mood represents the overall momentum of recent
outcomes, and its biasing influence on the perception of outcomes ‘corrects’
learning to account for environmental dependencies. We describe potential
dysfunctions of this adaptive mechanism that might contribute to the symptoms
of mood disorders.

Why Do We Have Moods?
The enormous and disruptive impact of mood disorders in society [1,2] might suggest that
mood (see Glossary) is an evolutionary relic that may have been advantageous for early humans
but impedes adaptive behavior in the modern world. Indeed, we often attribute irrational
behavior to the emotional state of a person [3–6]. Our language also reflects this view, with
expressions such as ‘moody’ and ‘being in a mood’ carrying negative connotations. We argue
that moods serve an important role in adaptive behavior, even in themodern world. We elucidate
this role by considering recent findings regarding the dynamics of mood, as well as its interaction
with the processes of learning and decision making. Based on these findings, we propose that
moods benefit ‘moody’ agents by mitigating inefficiencies that can arise in the process of
learning about the natural environment.

Advances in computational modeling have greatly facilitated an understanding of how humans
learn from outcomes to make better decisions [7–9]. Recently, scientists have begun to utilize
the same computational framework to study the dynamics of human emotional states in health
and in mental disorders, focusing on how these states affect and are affected by learning and
decision-making processes [10–12]. In particular, two burgeoning lines of research have sought
to characterize precisely, on the one hand, the causes of moods, and on the other the
consequences of mood states for learning and decision making. We first review these two
largely separate strands of research and then integrate them within a coherent theoretical
framework. We propose that mood represents the overall momentum of reward in the envi-
ronment, and that this representation serves to facilitate efficient learning by accounting for
statistical dependencies in the availability of rewards that are prevalent in nature.

Causes: Mood Depends on the Cumulative Impact of Unexpected Outcomes
To understand the function of mood, we first need to consider its causes. A vast psychological
literature demonstrates that mood can be manipulated via a range of techniques [13]. Presen-
tation of a film or story with emotional content is a common and effective mood-induction
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Glossary
Mood: ‘moods’ differ from ‘emotions’
in that moods typically last longer. In
addition, while an emotion typically
relates to a single stimulus, moods
are less tightly linked to particular
events and can reflect the cumulative
impact of multiple stimuli. Moods
influence a threshold for elicitation of
emotion, for example, depressed
mood can facilitate the expression of
an emotion of anger. Thus, many
researchers consider emotions and
moods as parallel interacting
processes that take place over
different timescales. Emotional states
can be measured along different
dimensions. We focus on the valence
dimension of happiness versus
unhappiness.
Outcome: an outcome is any event
of motivational significance.
Outcomes can be appetitive or
aversive. In this article we focus on
reward outcomes that are monetary
gains and losses because these
outcomes can be precisely
manipulated and quantitatively related
to both mood and behavior.
Reinforcement learning: a class of
algorithms that learn from trial and
error to predict which states of the
environment and which actions in
those states will maximize cumulative
future reward and minimize
cumulative future punishment.
technique. Other stimuli that reliably affect mood include music, self-referential statements,
observed social interactions, and facial expressions. While these stimuli are easy to present in
laboratory experiments, they are not readily quantifiable and are typically applied categorically,
without variation in either quantity or intensity. Monetary outcomes, by contrast, can be precisely
controlled and have also been shown to affect mood [14,15].

Another line of research, originating primarily in an economics literature, considers real-world
circumstances that covary with subjective well-being [16]. Such research is inherently correla-
tional, but has identified various factors that impact on mood, including outcomes of sporting
events and levels of sunshine [17,18]. Moreover, to measure the dynamics of emotional state
that are relevant to understanding adaptive behavior, well-being researchers have developed
experience-sampling techniques that probe participants as to their current subjective state while
they go about their daily lives [19,20]. These techniques, which involve periodically asking
participants about their current emotional state and what they are doing, are considered the
‘gold standard’ for investigating real-world emotion. Experience-sampling and related methods,
such as the day-reconstruction method [21,22], show that in typical individuals some activities
(e.g., conversation, eating) are consistently related to higher happiness ratings, while other
activities (e.g., work, commuting) are consistently related to lower happiness ratings. Some
studies have also applied these methods to study differences in well-being across individuals,
showing greater mood instability in bipolar disorder [23,24] and greater negative affect in
depression [25] compared to healthy subjects.

Recent research has used experience sampling to examine momentary mood fluctuations
during a laboratory-based probabilistic reward task in which monetary rewards varied
from trial to trial [26]. The main conclusion of the study was that happiness depends not
on how well things are going (in terms of cumulative earnings) but whether they are going
better than expected. In particular, self-reported happiness depended on ‘reward prediction
errors’ (RPEs; Box 1), that is, the difference between expected outcomes and obtained
outcomes. The laboratory results were also replicated in a large-scale smartphone-based
experiment with 18420 participants. In addition, blood-oxygen-level dependent (BOLD)
activity measured using functional magnetic resonance imaging (fMRI) in the ventral striatum,
a target area for dopamine neurons that represent RPEs [27–33], correlated with RPEs
and with subsequent happiness ratings. This is consistent with a possible role for dopami-
nergic RPE signals in determining mood. Indeed, pharmacologically boosting dopamine
levels has recently been shown to increase the happiness that results from particular types
of reward [34].

Consequences: Mood Biases Perception of Outcomes
It has long been thought that happiness induces a ‘rosy’ perspective, whereas a depressed
mood engenders negative judgments [35–37]. More recently, researchers have used compu-
tational methods in laboratory experiments to precisely quantify the effects of emotional state on
behavior. In one study [38], mood was manipulated using a wheel-of-fortune draw in which
participants either won or lost a relatively large sum of money. In participants independently
identified as being less emotionally stable, winning the draw increased self-reported happiness
and the effect of subsequent rewards on subsequent choices. By contrast, losing the draw
reduced happiness, as well as neural responses to subsequent rewards, and the effect of those
rewards on choices (Figure 1). Manipulating mood by viewing emotional facial expressions is
also known to induce a bias in both neural responses to rewards [39] and learning from rewards
[40]. Moreover, a depressed mood is associated with a reduced effect of rewards on subse-
quent choices [41,42], an effect that is better explained by reduced valuation of reward than by a
reduced rate of learning [43]. A similar relationship may also hold between an anxious emotional
state and perception of aversive outcomes: stressed humans and rats respond, neurally and
2 Trends in Cognitive Sciences, Month Year, Vol xx. No. x
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Box 1. A Computational Model of Momentary Subjective Well-Being

Mood is thought to reflect both positive and negative outcomes that have been recently experienced. However, a recent
study demonstrated that reported happiness during value-based decision making specifically depends on reward
expectations and how actual outcomes differ from these expectations [26]. Subjects repeatedly chose between (i)
outcomes that were certain and (ii) gambles with systematically varying potential gains and losses. In addition, they were
asked ‘how happy are you at this moment?’ after every 2–3 trials. Happiness ratings were modeled as follows (Figure I):

Happinesst ¼ w0 þ w1

Xt

j¼1

gt� jCR j þ w2

Xt

j¼1

gt� jEV j þ w3

Xt

j¼1

gt� jRPE j :

For each trial j (from the first trial and up to the current trial t), if the certain reward was chosen it was entered into the
equation as CRj. Conversely, if the gamble was chosen two terms were entered into the equation: EVj, the expected value
of the gamble, and RPEj, the difference between the actual outcome and the gamble EV. The weights w (which include a
constant termw0) capture the influence of task variables on momentary happiness. These influences decay exponentially
in time with a forgetting factor 0� g� 1 such that recent events are more influential than earlier events. Model parameters
were significantly positive on average in three laboratory experiments and in a large-scale smartphone-based field study.
RPE weights were significantly higher than EV weights, showing that surprise about outcomes had a stronger effect on
happiness than expectations about outcomes. However, changes in the two other task variables (CR and EV) also reflect
surprise about the certain rewards and gambles that were made available, and can also be thought of as a type of RPE.
Therefore, these results suggest that happiness reflects a running average of recent RPEs in which different types of
prediction errors may be differently weighted.
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Figure I. Subjective Well-Being, Model Predictions, and Neural Activity. (A) Happiness ratings during a
probabilistic reward task for two example participants. The model predicts ratings based on the past history of
expectations and reward prediction errors (RPEs) resulting from those expectations. (B) BOLD activity in the ventral
striatum measured by fMRI was correlated with subsequent happiness ratings, consistent with striatal representation of
RPEs contributing to changes in mood. Adapted from [26].
behaviorally, to aversive outcomes and ambiguous stimuli as if they are worse than they actually
are [44–46].

Other studies have explored additional effects of mood on decision making, many of which can
be similarly understood as reflecting a biased perception of reward or of stimuli indicating reward
availability. For example, positive mood induces risk-taking in laboratory experiments [47,48]
and in real financial markets [49,50], possibly by biasing upwards the perceived probability of
future positive outcomes [51]. In addition, repeated positive RPEs, which should improve mood
[26], invigorate reward-seeking behavior [52–55], possibly reflecting an implicit belief in greater
reward availability. Furthermore, a positive emotional state reinforces, and a negative emotional
state inhibits, one's current mode of thought, presumably by biasing perception of how well that
mode of thought is functioning [56–58]. Finally, many studies suggest that a depressed mood is
associated with greater attention or sensitivity to negative information, an effect that may underlie
biased perception of outcomes. Notably, both effects can be seen to reflect an implicit belief that
things are worse than the objective evidence suggests [59,60].
Trends in Cognitive Sciences, Month Year, Vol xx. No. x 3
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Figure 1. The Effect of a Monetary Outcome onMood and on Subsequent Neural and Behavioral Responses
to Rewards. (A) Experimental design of [38]. To manipulate mood, a one-shot wheel-of-fortune (WoF) draw was held in
between games, resulting in a gain or loss of $7. Game 1 and Game 2 involved different sets of slot machines with similar
reward probabilities, and participants learned about the machines by trial and error. In the Test phase, participants chose
between slot machines from Game 1 and Game 2. (B) In participants who reported high emotional instability, the WoF
outcome affected self-reportedmood (left, n = 28 per group; 1 is maximally happy and�1 is maximally unhappy) and striatal
BOLD response to rewardmeasured by fMRI (middle, n = 13 per group) during Game 2 as compared to Game 1 (shown are
t values). In the test phase, those participants who experienced a WoF win preferred Game 2 machines, which they had
played while in a better mood. By contrast, participants who had experienced a WoF loss preferred Game 1 machines,
which they played before the WoF draw (right, n = 28 per group; 1 indicates complete preference for Game 2 machines).
* P < 0.05, ** P < 0.001. Adapted from [38].
The upshot of this research is that mood induced by a stimulus can affect judgment about other,
potentially unrelated, stimuli. Indeed, this property may have given mood its reputation as a rich
fountain for irrational behavior. Any attempt to rationalize moods must therefore explain how
such biased judgments, which in some cases may reinforce irrelevant actions, nevertheless
promote adaptive behavior.

The Function of Mood
According to current theories, agents can maximize reward by keeping track of how much
reward is obtained in each experienced state of the environment, and then choosing actions that
return them to the states in which such reward has been most abundant [7,8]. For example, an
animal using such a mechanism can learn which specific trees bear more fruit and focus its
foraging efforts accordingly. This type of ‘reinforcement learning’ algorithm [9] constitutes a
powerful way to learn about the environment and converges upon optimal behavioral policies (e.
g., [61]). However, there are many real-world situations for which such an algorithm may be
poorly equipped. We propose that the information represented by mood is used to mitigate
problems that arise in the application of reinforcement learning to such real-world problems.

One such learning inefficiency arises when changes in reward in different states are correlated.
For instance, increased rainfall or sunshine may cause fruit to becomemore abundant in all trees
4 Trends in Cognitive Sciences, Month Year, Vol xx. No. x
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simultaneously. In this situation, it makes little sense to update expectations for each tree
independently, and a more efficient learning algorithm would instead infer a general increase
in reward and update expectations for all related trees accordingly. We suggest this is the
function of mood. If fruit becomes more abundant in all trees, a foraging animal will be
positively surprised multiple times as it visits adjacent trees and, as a result, its mood will
improve. Improved mood will bias the subjective reward for each subsequent fruit upwards,
and because these observations are used to update expectations, expectations associated
with these trees will be adjusted upwards more rapidly than they would be otherwise. In
essence, the effect of positive surprises will be enhanced as more positive surprises are
encountered.

Through the existence of mood, as an animal learns from experience, its expectations come to
reflect not only the reward associated with each particular state (e.g., each tree), but also recent
overall changes in the availability of reward in its environment. In this way, learning can account,
albeit approximately, for the impact of multiple general environmental factors without having to
directly infer the number of factors or the extent of their impact (Box 2). We have described one
scenario in which this can be beneficial, but such a generalization mechanism can improve the
efficiency of learning in any environment in which different sources of reward are interdependent.
Indeed, such interdependencies may be the rule rather than the exception, for both animals and
humans, because success in acquiring skills, material resources, social status, and even mating
partners can be tightly correlated.

Mood can also be useful for learning in another common scenario in which current changes in
reward predict later changes in reward. Many processes in the natural world have such
Box 2. Different Learning Algorithms for Different Environments

The optimal learning algorithm for a particular environment can be determined by creating a probabilistic model of the
environment and then using the laws of probability (specifically, Bayes rule) to infer what outcomes are most likely given
previously observed events [77,78]. For example, if reward in the environment is determined by the state we are in, and
states are independent of one another (Figure IA), the optimal learning algorithm estimates the reward expected in each
state similarly to a standard reinforcement learning algorithm [79]:

vstþ1 ¼ vst þ htðrt � vst Þ
That is, the estimated mean reward vs at state s is updated at each time-step t according to the difference between the
observed reward r and the previous estimate (i.e., the prediction error) scaled by a learning rate ht.

If, however, different states are not independent, but instead multiple states are similarly affected by general environ-
mental factors (Figure IB), then an efficient learning algorithm would update its expectations of all states that are affected
by the same factor when experiencing a prediction error in any one of them. This might not be feasible with an unknown
number of general factors, each applying to only a subset of neighboring states (e.g., the abundance of fruit is more tightly
correlated for trees growing in the same valley). However, a simple approximation is to keep track of all prediction errors in
recently visited states:

mtþ1 ¼ mt þ h0tððrt � vst Þ �mtÞ:
where h0t is a learning rate, and to assume that other states that are close in space or time have also changed similarly.
One way to implement this solution is to bias the perception of outcomes in subsequent states by adding a bonus to the
actual reward that reflects the tracked average of recent prediction errors (mt) such that this bonus gets incorporated into
learned expectations:

vstþ1 ¼ vst þ htð f t �mt þ rt � vst Þ:
where ft is a scaling factor. This way expectations of reward in particular states come to reflect not only the outcomes
experienced in those states, but also outcomes experienced in other related states.

The above algorithm can also be useful with only a single state, when changes in rewards are not independent in time but
instead follow an underlying momentum (Figure IC). In this case, precise inference requires estimation of the underlying
momentum, which again takes the form of a running average of recent prediction errors. This average can then be
integrated in the expectation update equation as above to account for the dependency between adjacent time-steps (see
Note S1 in the supplemental information online for mathematical derivations).

Trends in Cognitive Sciences, Month Year, Vol xx. No. x 5
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Figure I. Probabilistic Kalman–Filter [80] Models of the Environment. The reward outcome r at time-step t is
sampled from a normal distribution whosemean vst is specific to the current state. (A) For a particular state, depicted here,
changes in the mean follow a random walk with normally distributed noise. (B) A general environmental factor affects
multiple states. At each time-step t, a general factor gt is sampled from a normal distribution whose mean is zero, and is
then added to multiple state means (vst ). (C) Changes in reward follow an underlying momentum. The mean reward vst of a
state is sampled from a normal distribution whose mean is the sum of the previous mean vst�1 and the current momentum
mt. Changes in momentum follow a random walk.
momentum. For instance, initial increases in fruit availability may indicate that spring is coming
and that further increases are probable. In such a case, a positive mood would represent
inference of a positivemomentum –which would, in turn, bias perception of subsequent rewards
upwards. Because rewards would then be perceived as better than they really are, expectations
would be updated upwards quickly and would catch up with rising rewards. Similarly, if reward
availability is decreasing in an environment (e.g., winter is coming), then a negative mood leads to
rewards being perceived as less good than they actually are (even though increasingly rare
rewards still result in positive RPEs) and expectations will catch up with declining rewards,
allowing behavior to be quickly adjusted (e.g., hibernate). In accordance with this idea, the
relationship between mood and reward perception suggested by the recent literature can be
formally derived as statistical inference of average reward and its momentum (Box 2).

From Function to Dysfunction
Identifying the function of mood points to how it might be compromised, potentially leading to
maladaptive behavior. The proper function of mood, as we delineate, increases the efficiency of
learning about the environment when emotional reactions to changes in reward are appropriate
in intensity and duration. Positive or negative moods maximize their usefulness by persisting only
6 Trends in Cognitive Sciences, Month Year, Vol xx. No. x
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until expectations are fully updated in accordance with changes in rewards. Indeed, happiness
eventually returns to a baseline level even following highly significant changes in circumstances
[62], including winning the lottery [63], whereas excessive happiness can induce maladaptive
behavior [64,65]. This homeostasis crucially depends on appropriate updating of expectations,
that is, on the integrity of learning processes. If, for instance, expectations are not updated
downwards following outcomes that are worse than expected, encountering the same out-
comes again would continue to generate negative surprises indefinitely, inducing a negative
mood. In fact, in environments with evenmodest amounts of variability or randomness, it suffices
that the rate of learning (ht in Box 2) is lower for negative than for positive surprises in order for
overly optimistic expectations to develop. As a result, the frequency and magnitude of negative
surprises would increase, leading to lowmood (Figure 2A). Indeed, low serotonin function, which
has been associated with impaired learning from negative outcomes [66], is linked to both
depression and risk-taking behavior [67], two co-occurring conditions [68–71] that may stem
from lower negative learning rates and consequent overly optimistic expectations [30]. Interest-
ingly, in the general population, positive mood and risk aversion predominate [72,73], possibly
indicating higher learning rates for negative than for positive surprises, which could reflect the
greater importance to survival of avoiding negative outcomes.

More generally, if a negative mood is too intense or persists for too long, positive feedback
dynamics can exacerbate the situation. Bad mood will result in subsequent outcomes being
perceived as worse than they really are, leading to further negative surprises that induce further
decreases in mood, which in turn will make outcomes seem even worse, and so on (Figure 2B).
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Figure 2. Schematic of Possible Mood Dysfunctions. (A) (Top) Given a similar rate of learning in response to positive
and negative outcomes, an environment in which positive and negative outcomes are equally likely leads to neutral
expectations and a neutral mood on average. (Bottom) A lower rate of learning from negative outcomes leads to optimistic
expectations and therefore larger negative prediction errors and persistent negative mood, a symptom seen in major
depressive disorder. (B) Escalatory positive-feedback dynamics might turn mood into a ‘self-fulfilling prophecy’, leading to
emotional instability, a major symptom of bipolar disorder. Positive surprises improve mood, biasing perception of
outcomes upwards, thereby increasing the frequency and magnitude of further positive surprises. Optimistic expectations
develop owing to the biased perception of outcomes. Mood stabilizes once expectations catch up with perceived
outcomes, but subsequent outcomes, whose perception in now unbiased, then tend to fall short of optimistic expectations.
Thus, negative surprises follow, thereby diminishing mood and biasing perception of outcomes downward. Similar positive-
feedback dynamics then engender pessimistic expectations, setting the stage for the cycle to repeat, oscillating between
good and bad mood indefinitely even if there are no changes in the actual distribution of outcomes.

Trends in Cognitive Sciences, Month Year, Vol xx. No. x 7



TICS 1472 No. of Pages 10

Outstanding Questions
How is mood represented in the brain?

How do long-lasting moods interact
with and relate to more short-lasting
emotions?

Can an anxious mood be understood
as a representation of momentum in
aversive outcomes?

How can our model, which was derived
from studies of healthy individuals, be
utilized to explain the dynamics of
mood in psychiatric mood disorders?

How do antidepressants, mood stabil-
izers, and other therapeutic interven-
tions affect the dynamics of mood?
As expectations are updated to match biased perception of outcomes, overly pessimistic
expectations can develop. Only if expectations catch up with perceived outcomes will the
escalatory dynamics abate and de-escalation begin. Empirical findings indicate that an affective
perceptual bias precedes ostensible changes in mood in response to treatment with seroto-
nergic drug in major depressive disorder [74], an observation that supports a possible role for
such a feedback cycle in the unfolding of depressive episodes.

If mood does eventually return to baseline levels, the pessimistic expectations that developed
when mood was lower may now lead to increased positive surprises and improved mood.
In some individuals, good mood may also persist and a positive feedback cycle may
develop in the opposite direction, with good mood biasing perception of outcomes upwards,
thereby increasing positive surprises, which further improve mood (Figure 2B). Overly
optimistic expectations will develop, setting the stage again for negative surprises, which
decrease mood, and potentially turning the cycle in the negative direction again. The overall
result could be oscillatory dynamics, as observed in bipolar disorder, in which expectations
and mood cyclically fluctuate even in the absence of objective changes in the external
environment.

Thus, while learning makes outcomes more predictable and promotes habituation to these
outcomes, the biasing effect of mood on the perception of outcomes has the opposite
sensitizing effect of increasing responsivity to outcomes. A predisposition to emotional instability
could therefore result from any factor that strengthens the sensitizing effect of mood or that
weakens the habituating effects of learning (e.g., ht << h

0
t and high ft in Box 2). Laboratory

evidence suggests that such sensitization may indeed underlie emotional instability. Specifically,
participants who report being more emotionally unstable show stronger effects of outcomes on
their feelings, as well as on their evaluation of subsequent outcomes [38]. It is notable that
clinically pathological escalation in the direction of negative mood seems to be more prevalent
than escalation of positive moods. Negative moods might escalate more frequently because of a
stronger biasing effect, possibly reflecting the greater overall adaptive significance of reacting
quickly to negative changes in momentum.

Concluding Remarks
We have outlined a normative perspective on mood, according to which mood serves as a
representation of the momentum of changes in reward. This momentum signal can be used to
adjust learning to account for dependencies between different states and across time. How this
momentum is represented in the brain is an open question (see Outstanding Questions),
although some studies implicate the neuromodulators serotonin and dopamine
[26,27,53,75,76]. Our approach suggests different ways in which the function of mood might
be disrupted, and we have described two specific dysfunctions that might contribute to the
emergence of depression and mood instability. The proper function of mood might also lead to
maladaptive behavior in particular scenarios. Thus, moods can reflect inference of momentum
even when there is none in the environment, leading to excessive optimism or pessimism.
However, the ubiquity of moods and the extent of their impact on our lives tells us that,
throughout the course of evolution, our moodinessmust have conferred a significant competitive
advantage. Being moody at times may be a small price to pay for the ability to adapt quickly
when facing momentous environmental changes.
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