Concise Review: Cell Therapies for Hereditary Metabolic Liver Diseases—Concepts, Clinical Results, and Future Developments

TOBIAS CANTZ,a,b AMAR DEEP SHARMA,b,c MICHAEL OTTb,d

Key Words. Liver • Cellular therapy • Hepatic stem cells • Progenitor cells • Hepatocyte differentiation • Pluripotent stem cells • Clinical translation

ABSTRACT
The concept of cell-based therapies for inherited metabolic liver diseases has been introduced for now more than 40 years in animal experiments, but controlled clinical data in humans are still not available. In the era of dynamic developments in stem cell science, the “right” cell for transplantation is considered as an important key for successful treatment. Do we aim to transplant mature hepatocytes or do we consider the liver as a stem/progenitor-driven organ and replenish the diseased liver with genetically normal stem/progenitor cells? Although conflicting results from cell tracing and transplantation experiments have recently emerged about the existence and role of stem/progenitor cells in the liver, their overall contribution to parenchymal cell homeostasis and tissue repair is limited. Accordingly, engraftment and repopulation efficacies of extrahepatic and liver-derived stem/progenitor cell types are considered to be lower compared to mature hepatocytes. On the basis of these results, we will discuss the current clinical cell transplantation programs for inherited metabolic liver diseases and future developments in liver cell therapy.

HEPATOMYC OR STEM CELLS: WHICH CELL DRIVES PARENCHYMAL LIVER MAINTENANCE AND REGENERATION OF THE LIVER?

The long prevailing view in liver physiology and pathophysiology has localized a hepatic stem/progenitor cell compartment at or near the canals of Hering, in periductular glands and in extrahepatic bile duct structures [1–3]. Some researchers found proof that biliary tree-associated stem/progenitor cells continuously generate hepatocytes and bile duct cells and maintain the normal turnover of parenchymal liver cells [4]. According to the “streaming theory,” stem/progenitor cells derived hepatocytes continuously migrate from the periporal areas toward central vein structures, mature and express differential metabolic activities. Cell fate tracing experiments have attributed Sox9 expressing cells with stem/progenitor properties in the liver as well as in several other epithelial organs [5–7]. More recent data challenge this view and provide evidence for a more complex situation in the liver.

Following acute injury small cells, which express the WNT ligand receptor Lgr5, emerge in the liver and generate hepatocytes [8]. These cells were identified randomly throughout the liver and could not be traced in the noninjured liver. Although the Lgr5+ cells, which coexpress Krt19 and Sox9, could still be derived from a (not identified) biliary lineage-derived stem/progenitor cell in the liver, other studies indicate that mature hepatocytes can dedifferentiate and acquire properties of a liver stem/progenitor cell including the expression of progenitor and biliary lineage-associated cell surface markers. "Knockdown" of the Hippo/Yes-associated protein (YAP) signalling pathway in hepatocytes resulted in emergence of cells with liver stem/progenitor characteristics. Upon restoration of YAP expression, at least some progenitor cells turned back to the mature hepatocyte phenotype indicating a bidirectional role of the Hippo/YAP pathway. Isolated hepatocyte-derived stem/progenitor-like cells in this study demonstrated self-renewal and engraftment capacity at a single cell level [9]. The process of dedifferentiation after liver injury and subsequent redifferentiation in the regenerative phase has also been observed for human hepatocytes in a combined human/mouse chimeric liver transplantation and cell fate tracing animal model [10]. The appearance of dedifferentiated hepatocyte-derived cells expressing stem/progenitor markers through a process, which mimics epithelial to mesenchymal transition in tumor tissues, could thus be viewed as a response to escape mature hepatocyte specific injuries such as viral diseases (hepatitis B and C) or cytochrome P450-related toxicities.
Regardless of the nature and phenotype of the stem/progenitor cells, the overall contribution to liver regeneration of hepatic cells, which are not derived from hepatocytes, has been questioned. It is long known that the liver regenerates by replication of mature hepatocytes after loss of liver tissue and acute injuries [11–13]. During chronic injuries, in which replication capacity of mature hepatocytes are exhausted or chemically blocked, small oval-shaped cells expressing stem cell and biliary lineage markers appear in periportal areas [14–16]. It was hypothesized that these biliary lineage-associated oval cells (rats) or progenitor-like cells (mice) regenerate the liver via differentiation into hepatocytes. Cells fate tracing models, however, have demonstrated that nonhepatocyte cells in the liver do not significantly contribute to hepatocyte regeneration in acute as well as various chronic liver injury models [17–19]. These findings argue against a functional stem cell compartment as almost all hepatocytes were derived from resident hepatocytes independent from the injury applied to the mouse livers. Additionally, all of these studies did not find evidence for stem/progenitor contribution to hepatocyte maintenance in normal livers. The results have recently been confirmed in mouse/mouse and human/mouse chimeric liver transplantation models [10, 20].

ENGRAFTMENT AND REPOPULATION IN CHIMERIC LIVER TRANSPLANTATION MODELS

After intraportal or intrasplenic injection, engraftment and integration into the hepatic cords of primary mature hepatocytes has been demonstrated in many animal species and humans (Fig. 1). Hepatocytes are entrapped into liver sinusoids and cross the endothelial barrier most likely by mechanical forces. The transplanted cells connect to neighboring hepatocytes by re-expression of gap junction proteins, survive long term, and respond to growth stimuli [27]. Some evidence exist that cotransplantation of stromal cells facilitates the process of hepatocyte engraftment and proliferation most likely by the release of cytokines and growth factors [23]. Engraftment in the adult liver similar to mature hepatocytes has also been demonstrated for dedifferentiated hepatocytes, fetal hepatoblasts, embryonic and induced pluripotent stem (iPS)-
Figure 2. Competitive repopulation fitness of various human cell sources in heterozygous immunodeficient uPA mice. (A): alb-uPA mice express the uPA in hepatocytes, resulting in activation of metalloproteinases, breakdown of extracellular matrix, and fibrin dissolution. In heterozygous alb-uPA mice, a few endogenous hepatocytes (light brown) could silence the transgene and compete with transplanted enhanced green fluorescent protein (EGFP)-transgenic cells (green) to repopulate the liver. (B): Extent of liver tissue repopulation subject to various cell transplant sources, aHSC (1 x 10^6 cells, n = 21 animals); MSC (1 x 10^6 cells, n = 23 animals); ES/iPS-HLC (1 x 10^6, n = 9 animals); fHBC (ED11.5d) (1 x 10^6 cells, n = 7 animals); fHBC (ED13.5d) (5 x 10^6 cells, n = 4 animals; 1 x 10^6 cells, n = 4 animals); and adult HC (5 x 10^6 cells, n = 5 animals; 1 x 10^6 cells, n = 5 animals). Results were partially adapted from Haridass et al. [31]. Abbreviations: aHSC, adult murine hematopoietic stem cell; ECM, extracellular matrix; ES/iPS-HLC, murine embryonic or induced pluripotent stem cell-derived hepatocyte-like cell; fHBC (ED 11.5d), murine fetal hepatoblasts at day 11.5 post conception; HC, murine hepatocyte; MMP, matrix metalloproteinase; MSC, murine mesenchymal stromal cell derived from bone marrow; uPA, urokinase-type plasminogen activator.

CLINICAL EXPERIENCE WITH HEPATOCYTE TRANSPLANTATION IN HEREDITARY METABOLIC LIVER DISEASE

From the clinical point of view, transplantation of hepatocytes or hepatocyte-like cells may represent an alternative to orthotopic liver transplants for the correction of genetic disorders resulting in metabolically deficient states. The aim of hepatocyte transplantation in metabolic disease is to partially replace the missing function without the need to replace the whole organ. More than 30 children and adults, who received liver cell therapy for metabolic liver disease, are reported in literature [33–35]. Clinical therapies up to now have been performed by infusing fresh or cryopreserved primary hepatocyte suspensions, which were isolated from donated organs. The availability of high-quality liver tissue for cell isolation, however, has slowed the widespread application of this therapy. Furthermore, the clinical situation of target patients is rarely immediately life threatening, and often acceptable conventional therapies are available. Therefore, the potential benefit must be carefully weighed against any possible complications, such as side effects from immunosuppression, hepatocyte embolization of the pulmonary vascular system, sepsis, or hemodynamic instability.

The results of hepatocyte transplantation for several metabolic liver diseases have been encouraging with demonstrable therapeutic effects, although long-term correction of metabolic deficiencies in the majority of cases has not been reported. Therapeutic benefit has been reported in a girl with Crigler-Najjar syndrome type I, which is a recessively inherited metabolic disorder characterized by severe unconjugated hyperbilirubinemia [36]. Isolated hepatocytes were infused through the portal vein and partially corrected plasma...
bilirubin levels for more than 11 months. Similarly, a 9-year-old boy received 7.5 × 10^9 hepatocytes, infused via the portal vein, which resulted in a decrease in of bilirubin levels from 530 ± 38 μmol/l (mean ± SD) before to 359 ± 46 μmol/l [37] after transplantation. These cases demonstrate efficacy and safety, however, a single course of cell application seems not sufficient to correct Crigler-Najjar syndrome type I completely.

Promising results have also been obtained in a 47-year-old woman suffering from glycogen storage disease type 1a, an inherited disorder of glucose metabolism resulting from mutations in the gene encoding the hepatic enzyme glucose-6-phosphatase [38]. ABO blood group-compatible hepatocytes (2 × 10^9) were infused into the portal vein. Nine months after cell transplantation, her metabolic situation had clearly improved. Successful hepatocyte transplantation has also been achieved in a 4-year-old girl with infantile Refsum disease, an inborn error of peroxysome metabolism, leading to increased levels of serum bile acids and the formation of abnormal bile acids [39]. A total of 2 × 10^9 hepatocytes from a male donor were given during eight separate intraportal infusions. Abnormal bile acid production (for instance pipecolic acid) had decreased by 40% after 18 months. Hepatocyte transplantation has been used successfully to treat inherited factor VII deficiency [40]. Two brothers (aged 3 months and 3 years) received infusions of 1.1 and 2.2 × 10^9 ABO-matched hepatocytes into the inferior mesenteric vein. Transplantation improved the coagulation defect and decreased the necessity for exogenous factor VII to approximately 20% of that prior to cell therapy. As with the other metabolic liver diseases, hepatocyte transplantation has been shown to provide a partial and temporary correction of urea cycle defects. Sustained response was reported in a patient with argininosuccinate lyase deficiency after repeated hepatocyte transplantation. Engraftment of the transplanted cells was analyzed in repeated liver biopsies for more than 12 months by fluorescence in situ hybridization for the Y-chromosome and by measurement of tissue enzyme activity [41]. Other patients showed clinical improvement, reduced ammonia levels, and increased production of urea [35, 42–45]. A summary of well-documented and published hepatocyte transplantations in various inherited metabolic liver diseases is presented in Table 1.

Based on these initial results, two major programs, which are sponsored by biotech companies, currently evaluate safety and efficacy of liver cell therapy for inherited metabolic liver disease in controlled clinical trials. The Cytonet program uses cryopreserved isolated primary human hepatocytes for intraportal application in patients with urea cycle disorders. The Promethea program isolates and propagates a liver stromal cell for transplantation in various hereditary metabolic diseases.

Table 1. Clinical hepatocyte transplantations in patients with inherited metabolic liver diseases

<table>
<thead>
<tr>
<th>Disease cycle disorder</th>
<th>Sex/age</th>
<th>Cells (total)</th>
<th>Cells/kg per body weight × 10^9</th>
<th>Outcome</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea cycle disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ornithine transcarbamylase activity</td>
<td>Male/1 day</td>
<td>1.05 × 10^9</td>
<td>3.1</td>
<td>Ammonia levels ↓, OLT after 6 months</td>
<td>[42]</td>
</tr>
<tr>
<td></td>
<td>Male/14 months</td>
<td>2.4 × 10^9</td>
<td>0.24</td>
<td>Ammonia levels ↓, OLT after 6 months</td>
<td>[44]</td>
</tr>
<tr>
<td></td>
<td>Male/1 day</td>
<td>1.6 × 10^9</td>
<td>0.4</td>
<td>Ammonia levels ↓, OLT after 7 months</td>
<td>[46]</td>
</tr>
<tr>
<td></td>
<td>Male/5 years</td>
<td>1.7 × 10^9</td>
<td>NA</td>
<td>Ammonia levels ↓, death after 43 days</td>
<td>[47]</td>
</tr>
<tr>
<td></td>
<td>Male/6 hours</td>
<td>0.6 × 10^9</td>
<td>0.18</td>
<td>Ammonia levels ↓, death after 4 months</td>
<td>[45]</td>
</tr>
<tr>
<td></td>
<td>Male/4 days</td>
<td>0.6 × 10^9</td>
<td>0.16</td>
<td>Ammonia levels ↓, waiting for OLT</td>
<td>[45]</td>
</tr>
<tr>
<td>Citrullinemia</td>
<td>Female/4 years</td>
<td>1.5 × 10^9</td>
<td>0.1</td>
<td>Ammonia levels ↓</td>
<td>[45]</td>
</tr>
<tr>
<td>Carbamoylphosphate synthase deficiency</td>
<td>Male/10 weeks</td>
<td>1.37 × 10^9</td>
<td>0.23</td>
<td>Ammonia levels ↓</td>
<td>[45]</td>
</tr>
<tr>
<td>Argininosuccinate lyase deficiency</td>
<td>Female/3.5 years</td>
<td>4.7 × 10^9</td>
<td>0.35</td>
<td>Ammonia levels ↓, psychomotor catch-up</td>
<td>[41]</td>
</tr>
<tr>
<td>Infantile Refsum disease</td>
<td>Female/4 years</td>
<td>2.0 × 10^9</td>
<td>0.2</td>
<td>Pipecolic acid ↓</td>
<td>[39]</td>
</tr>
<tr>
<td>Phenylketonuria</td>
<td>Male/6 years</td>
<td>2.5 × 10^9</td>
<td>NA</td>
<td>Phenylalanine ↓</td>
<td>[48]</td>
</tr>
<tr>
<td>FVII deficiency</td>
<td>Male/3 years</td>
<td>2.2 × 10^9</td>
<td>0.14</td>
<td>FVII consumption ↓, OLT after 7 months</td>
<td>[40]</td>
</tr>
<tr>
<td></td>
<td>Male/3 month</td>
<td>1.09 × 10^9</td>
<td>0.18</td>
<td>FVII consumption ↓, OLT after 8 months</td>
<td>[40]</td>
</tr>
<tr>
<td>Glycogen storage</td>
<td>disease type I a and Ib</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female/47 years (type Ia)</td>
<td>2.0 × 10^9</td>
<td>0.04</td>
<td>Control of blood glucose levels</td>
<td>[38]</td>
</tr>
<tr>
<td></td>
<td>Male/18 years (type Ib)</td>
<td>6 × 10^9</td>
<td>0.17</td>
<td>Control of blood glucose levels</td>
<td>[49]</td>
</tr>
<tr>
<td>Crigler-Najjar syndrome type I</td>
<td>Female/9 years</td>
<td>6 × 10^9</td>
<td>0.16</td>
<td>35% reduction in serum bilirubin levels, OLT after 6 months</td>
<td>[50]</td>
</tr>
<tr>
<td></td>
<td>Female/7 years</td>
<td>1.4 × 10^9</td>
<td>NA</td>
<td>40% reduction in serum bilirubin levels, OLT after 11 months</td>
<td>[51]</td>
</tr>
<tr>
<td></td>
<td>Female/1 year</td>
<td>2.6 × 10^9</td>
<td>0.35</td>
<td>65% reduction in serum bilirubin levels, OLT after 4 months</td>
<td>[50]</td>
</tr>
<tr>
<td></td>
<td>Female/10 years</td>
<td>7.5 × 10^9</td>
<td>0.2</td>
<td>50% reduction in serum bilirubin levels, OLT after 4 years</td>
<td>[36]</td>
</tr>
<tr>
<td></td>
<td>Male/9 years</td>
<td>7.5 × 10^9</td>
<td>NA</td>
<td>50% reduction in serum bilirubin levels, OLT after 5 months</td>
<td>[37]</td>
</tr>
<tr>
<td></td>
<td>Female/3 years</td>
<td>2.1 × 10^9</td>
<td>NA</td>
<td>30% reduction in serum bilirubin levels</td>
<td>[35, 52]</td>
</tr>
<tr>
<td></td>
<td>Male/1.5 years</td>
<td>4.3 × 10^9</td>
<td>NA</td>
<td>30% reduction in serum bilirubin levels, OLT after 8 months</td>
<td>[35, 52]</td>
</tr>
</tbody>
</table>

Abbreviations: NA, not announced; OLT, orthotopic liver transplantation.
THE CYTONET PROGRAM

The Cytonet investigational medicinal product “Human Heterologous Liver Cells” (HHLivC) is being developed as an advanced therapy medicinal product for the treatment of urea cycle disorders, a rare disorder, which is characterized by inherited deficiencies of enzymes involved in the urea cycle. HHLivC consists of a cryopreserved dispersion of liver cells prepared for intraportal administration. HHLivCs are isolated from nontransplantable donor organs and refined in a manufacturing process under Good Manufacturing Practice conditions [53]. For long-term storage in the vapor phase over liquid nitrogen, the final study medication is prepared with a cryopreservation solution and subsequently filled in single final medication bags. The study medication is infused via the portal vein through branches of the inferior or superior mesenteric vein. Viable liver cells per kilogram body weight (3 × 10^6) are infused in equal fractions over period of 6 days. After initial applications of HHLivCs in four patients with urea cycle disorders with promising results, a total of 21 patients with ornithine transcarbamylase (OTC), carbamoylphosphat-synthetase I, and argininosuccinate synthase deficiencies at the age of 0–5 years have subsequently been recruited for two pivotal studies (CCD02 and CCD05) in Germany, U.S. and Canada [45]. Primary efficacy endpoints as defined by the incidence of severe (≥500 μM) and moderate (≥250 μM) hyperammonemic events are compared with matched historical controls (n = 63 patients). Performance of the urea cycle cannot be easily assessed in vivo, since in vitro enzyme activity does not always reflect in vivo metabolic flux in urea cycle deficient (UCD) patients [54]. Furthermore, established biochemical markers, such as plasma urea, ammonia or glutamine concentrations, do not reliably indicate the functioning of the urea cycle because the plasma concentrations of these metabolites also depend on other factors, mainly the diet, conservative therapy, or trigger factors such as infections. Therefore, direct outcome parameters, which are unaffected by comitant treatments and diet, are desirable to determine the effectiveness of HHLivC therapy in vivo. An in vivo 13C-ureagenesis assay, which is able to directly measure the patient’s metabolic capability to produce urea from oral sodium acetate, was developed. This test was adopted for the studies based on published protocols [55, 56] and is used as an additional efficacy endpoint in studies CCD02 and CCD05. To allow patients access to the new treatment option that enables prevention or delay of hyperammonemnic crises in this pediatric population with a high medical need, the market approval application was submitted to the European Medicines Agency in December 2013 based on currently available interim data.

THE PROMETHERA PROGRAM

HepaStem from Promethera Biosciences, a Belgian biotech company, consists of a Heterologous Human Adult Liver Progenitor Cells suspension, which is generated from normal adult human liver tissue. The cells are described as fibroblastic in morphology expressing mesenchymal as well as hepatocytic markers and can be expanded from cultured primary hepatocytes [32, 57]. Preclinical studies in animals have shown safety and engraftment in recipient livers. The first transplantation of HepaStem in a 3-year-old girl suffering from ornithine transcarbamylase (OTC) deficiency showed 3% engraftment after 100 days as determined by the Y chromosome fluorescenc in situ hybridisation (FISH) technique. The clinical outcome of this patient was not reported [58] in the publication. At the annual meeting of the Society for the Study of Inborn Errors of Metabolism (SSIEM) in September, 2014, safety of the treatment was demonstrated in 14 patients with urea cycle defects and in 6 patients with Crigler-Najjar syndrome. Preliminary efficacy data in this phase I study in patients suffering from urea cycle defects have been presented at the SSIEM in Innsbruck this year and showed variable results [59]. Approval for enrollment of patients with urea cycle defects has been granted by Belgian authorities for a phase IIb/III trial in October 2014.

FUTURE DEVELOPMENTS TO CLOSE THE BOTTLE NECKS OF LIVER CELL THERAPIES

Clearly, one of the most obvious bottle necks for wide spread distribution of liver cell therapies for metabolic liver diseases is the availability of high-quality cells for transplantation (Fig. 1). Applying more advanced differentiation protocols supported by fine-tuned cytokine and small molecule supplementation or microRNA modulation, the derivation of hepatocyte-like cell from ES and iPS cells has made considerable progress [25, 60–62], although maturity of the cells in various differentiation protocols is still lacking and engraftment after transplantation is low. With iPS technology, the production of unlimited numbers of patient-derived or immunologically compatible hepatocyte-like cells can be envisioned, and genetic engineering technology will allow the correction of disease-causing mutations in patient-derived iPS cells as recently demonstrated [63–65]. For several inherited metabolic liver diseases, such as alpha-1 antitrypsin deficiency, glycogen storage disease type 1a, or familial hypercholesterolemia iPS-derived hepatocyte-like cells, have been developed [65–67]. A detailed review on iPS based disease modelling and transplantation has recently been provided by Ordonez and Goldstein [68].

As proof of concept for safety and applicability of iPS cell-based therapies, iPS cells from a mouse model of hereditary tyrosinemia (fumarylacetoacetate hydratase deficiency, Fah−/−/− mice) have been genetically corrected by a lentivirally delivered construct and, such engineered iPS cells have been subjected to tetraploid embryo aggregation experiments [69]. The resulting newborn mice did neither show signs of FAH deficiency nor growth of iPS cell-related tumors and exhibited a normal live span. Recently, major advances in the generation of human iPS cells have been achieved and the elucidation of preferential stochiometries of the four reprogramming factors [70, 71] inspired the design of suitable polycistronic vectors for the delivery of the reprogramming factors [72]. Importantly, human iPS cells can now be generated by vectors, which do not integrate the transcription factors into the genome of the target cells, or can even be induced by small molecule compounds [73–76]. Although insertional mutagenesis by integrating vectors can be avoided, the cells still carry the risk of “a mutational history,” when they are derived from postnatal tissues.

Protocols for the elimination of remaining stem cells in ES and iPS-derived hepatocyte cultures have been developed, but the risk of teratoma formation after transplantation due to residual stem cells remains and provides a hurdle for clinical grade manufacturing. To avoid the state of pluripotency, a partial reprogramming approach has been developed. Those protocols result in the generation of hepatic multipotent progenitor-like cells, which can still be expanded and used for
The direct reprogramming approach attempts to generate cells exhibiting a hepatic phenotype by overexpression of combinations of liver-enriched transcription factors. Several groups have now demonstrated the induction of a mature hepatic phenotype in mouse and human fibroblasts and shown transplantability of the cells in liver repopulation animal models [79–81]. Although many functional features of primary hepatocytes could be demonstrated, fidelity of global gene expression of the so-called iHeps has been questioned [82, 83]. Furthermore, no data are available on genetic stability and tumorigenicity of the cells in transplanted animals. However, the concept of direct reprogramming somatic cells across the respective germ-layer lineages is rather young and similar obstacles need to be overcome for the direct induction of neural cells, cardiac cells, and blood cells [84].

For stable and long-term phenotypic correction in a variety of hereditary metabolic liver diseases, engraftment of the transplanted cells must be improved. A repeated application of cells has been shown to increase the engraftment in animals, a procedure, which has already been incorporated in the Cytonet protocol. Further increase of engraftment can be achieved by pharmacological interventions with vasodilators, which increase the capacity of liver sinusoids for infused hepatocytes or the application of anti-inflammatory drugs such as indomethacin [85–87].

Various methods and genetic animal models, which harness a selective advantage of transplanted cells over resident cells, are widely available and demonstrate a high degree of stable cellular repopulation after hepatocyte transplantation. Most of these principles, however, are not applicable in humans. A combination of liver irradiation/portal ischemia and portal venous embolization has been successfully tested in rats and nonhuman primates and shown to increase engraftment compared to conventional transplantation [88, 89]. Concerns about long-term consequences in neonates and small children, however, have slowed the translation of these techniques into clinical practice. A recent report from a consensus meeting in London summarized the activities of the major cell transplantation programs, identified new developments, and discussed the challenges for transfer into clinical practice [90].

Novel experimental concepts, which recently emerged from animal studies, may provide alternative strategies for cellular therapies of the liver, although none has yet reached a clinical stage. Organ-like structures resembling embryonic liver buds have been developed by self-aggregation of iPS-derived hepatocyte-like cells, endothelial cells, and fibroblasts (Fig. 1). The engineered tissues have been transplanted at extrahepatic sites in mice and shown sustained liver functions and long-term survival [26]. Decellularized liver matrices were successfully repopulated with primary hepatocytes and shown to function in transplantation experiments [91]. Seeding of these acellular liver matrices with gene corrected iPS-derived hepatic cells could lead to autologous liver organ transplantation in patients with inherited metabolic liver diseases. Ectopic hepatocyte transplants, which were conducted in Japanese patients more than 20 years ago, could again emerge as an alternative strategy to treat inherited metabolic liver [21]. Injection of cells into lymph nodes was sufficient to rescue Fah−/− tyrosinemic mice [22] and could thus be applicable also to other inherited liver diseases.

Summary

Approved protocols for the isolation, cryopreservation, and storage of primary human hepatocytes from donated liver organs have now been developed. Controlled trials with those cells in standardized clinical protocols will soon show, whether hepatocyte infusions can achieve clinical benefits in defined patient populations with hereditary metabolic liver diseases. The engraftment efficacy of primary hepatocytes may already be good enough to show significant clinical benefits in some indications such as “early onset” urea cycle disorders. For other disorders, such as low density lipoprotein (LDL) receptor deficiencies (familial hypercholesterolemia), which also manifest at extrahepatic sites, clinically applicable liver repopulation strategies are needed to increase hepatocyte engraftment and to stably correct the clinical phenotype. Alternative techniques, which are based on tissue engineering approaches or ectopic transplantation of cells, could soon emerge as therapeutic alternatives for affected patients. Finally, cell sources, which are most likely based on ES, iPS, or direct programming technologies, will likely replace the isolated primary cells in the future, if safety and engraftment efficacy can be further increased.

Acknowledgment

TWINCORE is a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI).

Author Contributions

T.C.: conception and design and manuscript writing; A.D.S.: manuscript writing and final approval of manuscript; M.O.: conception and design, manuscript writing, and final approval of manuscript.

Disclosure of Potential Conflicts of Interest

The authors indicate no potential conflicts of interest.

References

Sokal EM, Stephene X, Ottolehni C et al. Liver engraftment and repopulation by

