IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses

Highlights
- Presynaptic IGF-1Rs are basally active in hippocampal neurons
- IGF-1R tone enhances evoked transmission, while inhibiting spontaneous transmission
- Mitochondrion is a differential regulator of synaptic transmission by IGF-1Rs
- IGF-1R tone buffers resting Ca^{2+} and maintains ATP levels during spiking activity

Authors
Neta Gazit, Irena Vertkin, Ilana Shapira, ... , Yael Mor, Silvio Rizzoli, Inna Slutsky

Correspondence
islutsky@post.tau.ac.il

In Brief
Gazit et al. demonstrate that presynaptic IGF-1R tone enhances evoked while suppressing spontaneous synaptic vesicle release in hippocampal neurons. Mitochondria, activated by IGF-1Rs, constitute a differential regulator of information processing by maintaining evoked-to-spontaneous transmission ratio, while constraining synaptic high-pass filtering.
IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses

Neta Gazit, Irena Vertkin, Ilana Shapiro, Martin Helm, Edden Slomowitz, Maayan Sheiba, Yael Mor, Silvio Rizzoli, and Inna Slutsky

1Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
2Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
3Department of Neuro- and Sensory Physiology, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, European Neuroscience Institute, University of Göttingen Medical Center, 37075 Göttingen, Germany
4International Max Planck Research School Molecular Biology, 37077 Göttingen, Germany
*Correspondence: islutsky@post.tau.ac.il
http://dx.doi.org/10.1016/j.neuron.2015.12.034
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SUMMARY

The insulin-like growth factor-1 receptor (IGF-1R) signaling is a key regulator of lifespan, growth, and development. While reduced IGF-1R signaling delays aging and Alzheimer’s disease progression, whether and how it regulates information processing at central synapses remains elusive. Here, we show that presynaptic IGF-1Rs are basally active, regulating synaptic vesicle release and short-term plasticity in excitatory hippocampal neurons. Acute IGF-1R blockade or transient knockdown suppresses spike-evoked synaptic transmission and presynaptic cytosolic Ca^{2+} transients, while promoting spontaneous transmission and resting Ca^{2+} level. This dual effect on transmitter release is mediated by mitochondria that attenuate Ca^{2+} buffering in the absence of spikes and decrease ATP production during spiking activity. We conclude that the mitochondria, activated by IGF-1R signaling, constitute a critical regulator of information processing in hippocampal neurons by maintaining evoked-to-spontaneous transmission ratio, while constraining synaptic facilitation at high frequencies. Excessive IGF-1R tone may contribute to hippocampal hyperactivity associated with Alzheimer’s disease.

INTRODUCTION

IGF-1R signaling pathway is genetically preserved throughout evolution and is essential for normal development, growth, and survival (D’Ercole et al., 1996). Reduction in the IGF-1R signaling represents a highly conserved mechanism of lifespan extension and delays aging in diverse species, including yeast, worms, fruit flies, and rodents (Kenyon, 2010). Moreover, mutations leading to partial loss of function in the IGF-1R are associated with exceptional longevity in humans (Suh et al., 2008). As aging is the major risk factor for the development of Alzheimer’s disease (AD) and other neurodegenerative disorders (Amaducci and Tesco, 1994), it is plausible that reduction in the IGF-1R signaling may augment ability of neural circuits to delay the onset of neurodegeneration (Cohen and Dillin, 2008). Genetic reduction in the IGF-1R level has been shown to rescue AD-like pathology, synaptic, and cognitive deficits (Cohen et al., 2009; Freude et al., 2009; Gontier et al., 2015). On the other hand, IGF-1 was suggested as a potent neuroprotective hormone by other studies (Carro et al., 2002, 2006). These conflicting results underscore a gap in our understanding of the basic relationships between IGF-1R activity and neuronal functions.

The IGF-1R belongs to a family of transmembrane receptor tyrosine kinases (RTKs), which includes the highly homologous insulin receptor (IR) and IR-related receptors (LeRoith et al., 1995; Ulrich et al., 1986). The IGF-1R forms constitutive homodimers that undergo ligand-dependent conformational change upon activation (Lemmon and Schlessinger, 2010). IGF-1R displays high (0.16 nM) binding affinity toward IGF-1, while 100 lower affinity for insulin (Adam et al., 2000; Schumacher et al., 1991). IGF-1Rs are widely expressed in the brain, specifically in the hippocampus, olfactory bulb, cortex, choroid plexus, and cerebellum (Kar et al., 1993).

Evidence that IGF-1R and IGF-1 are involved in processes at long timescales is substantial. IGF-1 or IGF-1R deletions profoundly reduce brain size, while IGF-1R overexpression results in brain overgrowth (D’Ercole et al., 1996; Fernandez and Torres-Alemán, 2012). Blockade of synaptotagmin10-mediated IGF-1 secretion reduces neuronal size and synapse number in olfactory bulb (Cao et al., 2011). Moreover, IGF-1R blockade prevents exercise-induced neurogenesis in the hippocampus (Ding et al., 2006). Injection of IGF-1 prevents effects of monocellular deprivation on ocular dominance plasticity in the visual cortex (Tropea et al., 2006) and mediates the effect of enriched environment on retinal development (Landi et al., 2009) and hippocampal neurogenesis (Trejo et al., 2001). Despite substantial progress in understanding the role of IGF-1R signaling at extended timescales, whether IGF-1R is directly...
involved in the regulation of information processing in central neural circuits on short timescales remains largely unknown. Only a handful of studies, utilizing supra-physiological concentrations of IGF-1, addressed this question and obtained heterogeneous results. Acute application of IGF-1 or its analog des-IGF-1 have been reported to potentiate excitatory synaptic transmission through either presynaptic (Xing et al., 2007) or postsynaptic (Ramsey et al., 2005) mechanisms, to modulate voltage-gated calcium channels (VGCCs) (Blair and Marshall, 1997), and to increase intrinsic neuronal excitability (Wang et al., 2014). The lack of information on the role of IGF-1Rs in synaptic transfer is particularly striking in comparison to the extensive research on functions of other RTKs, such as the Trk receptor family for neurotrophic factors, in synaptic transmission and plasticity (Poo, 2001). Therefore, understanding whether and how IGF-1Rs directly regulate synaptic transfer of physiologically relevant spiking patterns is important.

To address this question, we examined the relationship between IGF-1R activity/expression level, synaptic vesicle release, synaptic transmission, and short-term plasticity in primary hippocampal cultures and in acute hippocampal slices. Utilizing super-resolution imaging and fluorescence resonance energy transfer (FRET) methodology, we found that presynaptic IGF-1Rs are normally activated under resting conditions, maintaining evoked release probability (P_r), while suppressing spontaneous vesicle release at hippocampal synapses. Our study identified mitochondrion as a differential regulator of evoked and spontaneous vesicle exocytosis by IGF-1R tone.

RESULTS

Basal IGF-1 Activates IGF-1R Signaling Pathway in Hippocampal Boutons

To assess the role of IGF1-R activity in normal neuronal function, we first asked where IGF1-Rs are expressed in hippocampal neurons. We used dual-color stimulated emission depletion (STED) microscopy, a diffraction-unlimited technique, to investigate IGF-1R localization with a resolution of ~ 50 nm (Revelo et al., 2014). The lack of information on the role of IGF-1Rs in synaptic transfer is particularly striking in comparison to the extensive research on functions of other RTKs, such as the Trk receptor family for neurotrophic factors, in synaptic transmission and plasticity (Poo, 2001). Therefore, understanding whether and how IGF-1Rs directly regulate synaptic transfer of physiologically relevant spiking patterns is important.

To address this question, we examined the relationship between IGF-1R activity/expression level, synaptic vesicle release, synaptic transmission, and short-term plasticity in primary hippocampal cultures and in acute hippocampal slices. Utilizing super-resolution imaging and fluorescence resonance energy transfer (FRET) methodology, we found that presynaptic IGF-1Rs are normally activated under resting conditions, maintaining evoked release probability (P_r), while suppressing spontaneous vesicle release at hippocampal synapses. Our study identified mitochondrion as a differential regulator of evoked and spontaneous vesicle exocytosis by IGF-1R tone.
changes (Lemmon and Schlessinger, 2010), we measured FRET between IGF-1R homodimers (Kavran et al., 2014). We transfected hippocampal cultures with IGF-1R C-terminally tagged with mCitrine (IGF-1R Cit) and with Cerulean (IGF-1R Cer) and performed FRET measurements at hippocampal boutons (Figure 2A). To estimate IGF-1R homomeric interactions, we measured the steady-state mean FRET efficiency (E_m) utilizing the acceptor photobleaching method, which dequenches the donor (Cer). E_m was measured in the presence of tetrodotoxin (TTX) which blocks spike generation, allowing only miniature synaptic release. High-magnification confocal images show an increase in Cer fluorescence after Cit photobleaching (Figure 2B), indicating dequenching of the donor and the presence of FRET. On average, IGF-1R Cer/IGF-1R Cit E_m was 0.092 ± 0.007 across hippocampal boutons (Figure 2C, left). To examine whether endogenously released IGF-1 activates IGF-1Rs in the vicinity of synapses, we measured the effect of an IGF-1R inhibitor tyrphostin AG1024. AG1024 prevents binding of the substrate and ATP at the receptor phosphorylation site and binds IGF-1R with higher affinity comparing to IR (Párrizas et al., 1997). AG1024 (1 μM) reduced E_m by 60% to 0.038 ± 0.01, indicating that IGF-1Rs are activated under basal conditions in hippocampal neurons. Surprisingly, addition of recombinant human IGF-1 (hIGF-1, 50 ng/ml) did not affect E_m, indicating that IGF-1Rs are saturated under basal conditions. To verify whether endogenously released IGF-1 activates IGF-1Rs, we used lentiviral-based short hairpin (shRNA) methodology to knock down (KD) endogenous IGF-1. While the control hairpin (shScr) had no impact on E_m, silencing of IGF-1 by the effective hairpin shIGF1 (~50% KD; Figures S1A and S1B) resulted in a
45% reduction of E_m (Figure 2C, right). Moreover, E_m was completely rescued by application of hIGF-1 in neurons infected with shIGF-1 (Figure 2C, right). E_m did not correlate to the donor-to-acceptor ratio in our experiments (Figure S2A), excluding it as a potential source of variability.

Next, we asked whether endogenously active IGF-1Rs stimulate Akt, a canonical substrate downstream of the IGF-1R. For this purpose, we used the FRET reporter of Akt activity (AktAR, Figure 2D) that contains Cer at the N terminus of the FHA1 domain and Venus (Ven) variant cpVE172 at the C terminus of the substrate region (Gao and Zhang, 2008). AG1024 decreased E_m by 54% from 0.093 ± 0.009 to 0.043 ± 0.006 (Figures 2E and 2F), suggesting that IGF-1R significantly contributes to basal Akt activity at synapses. FRET measurements did not depend on the donor-to-acceptor ratio (Figure S2B). Similar results were obtained by FRET ratio method, enabling FRET comparison per synapse (Figure S2C).

To verify whether AG1024 reduces Akt activity selectively via the IGF-1R, we used shIGF-1R to KD endogenous IGF-1Rs. We selected a sequence that causes efficient IGF-1R KD in hippocampal neurons (Figure S1). AktAR FRET was reduced to 0.045 ± 0.001 by shIGF-1R (Figure 2F), similarly to the level produced by AG1024 inhibitor. Moreover, AktAR FRET lost its sensitivity to AG1024 in shIGF-1R infected neurons (Figure 2F), indicating the specificity of AG1024 effect. Altogether, these results strongly suggest that IGF-1R signaling is activated under basal conditions in hippocampal neurons.

IGF-1R Blockade or KD Attenuates Evoked Synaptic Vesicle Release

Next, we explored whether endogenously released IGF-1 modulates basal synaptic Pr. We estimated the effect of pharmacological blockade of IGF-1Rs and its KD on presynaptic strength using activity-dependent FM dye (Abramov et al., 2009). First, we measured the density (D) and the intensity (ΔF) of activity-dependent FM1-43 dye uptake to presynaptic vesicles turned over by stimulation of 30 action potentials (APs) at a rate of 0.5–1 Hz in cultured hippocampal neurons (Figure S3A). We quantified the total presynaptic strength ($S = \Delta F \times D$) before and 15 min after addition of 1 μM AG1024. Inhibition of IGF-IRs by AG1024 induced a substantial decrease in both ΔF and D across synaptic populations, resulting in 53% reduction in the total S in hippocampal neurons (Figures 3A–3C). To determine the effect of AG1024 on vesicle exocytosis per se, we measured the rate of FM1-43 destaining during low-frequency stimulation. The experimental protocol described above was modified for staining of the total pool of recycling vesicles by 600 APs at 20 Hz and destaining by 1Hz stimulation (Figure S3B). AG1024 decreased the destaining rate constant ($K = 1/\tau_{\text{decay}}$, where τ_{decay} is an exponential time course) by 34% (Figure 3D), suggesting inhibition of the exocytosis rate. As a result of the IGF-1R-mediated presynaptic inhibition, mean firing rate of spontaneous spikes was reduced (Figure S4).

Due to a high homology between the IGF-1R and the IR, we examined the effects of two additional IGF-IR inhibitors displaying different mechanisms of action: (1) zIR3, a neutralizing antibody raised against the IGF–IR, preventing IGF-1 binding and blocking IGF-1-mediated receptor activation (Flier et al., 1986); and (2) picropodophyllin (PPP), a small toxin molecule, penetrating the cell membrane and inhibiting the receptor at the intracellular, substrate binding domain. PPP has been shown to specifically inhibit IGF-IR, but not IR (Vasilcanu et al., 2004). As both inhibitors require a longer time period to block IGF-1R activity, we pretreated the neuronal cultures for 3–4 hr with either PPP (1 μM) or zIR3 (1 μg/ml) before testing their effect on presynaptic function. The total S was reduced by 37% following PPP and by 29% following zIR3 treatments (Figure 3E).

Next, we asked whether the effect of pharmacological IGF-1R blockade on Pr can be mimicked by transient downregulation of IGF-1R expression in hippocampal neurons. Indeed, shIGF-1R reduced the total S by 50% (Figure 3F) without affecting the total vesicle recycling pool (Figure S5A). Importantly, the IGF-1R KD phenotype was rescued by shRNA-resistant wild-type IGF-1R (Figures 3F, S1D, and S1E). The effect of AG1024 on Pr was occluded by IGF-1R KD (Figures 3F and S5B), confirming the specificity of AG1024 effect.

Finally, we assessed the effect of ectopically applied IGF-1 on synaptic vesicle release. Acute application of recombinant IGF-1 from different sources (human or rat IGF-1 or des-(1-3)IGF-1 analog) did not alter basal synaptic vesicle recycling (Figure 3G), confirming saturation of presynaptic IGF-1Rs by extracellular IGF-1 as suggested by the FRET-based assessment of IGF-1R activation (Figures 2A–2C). Importantly, IGF-1 KD inhibited synaptic vesicle exocytosis and this effect was rescued by IGF-1 application (Figure 3H). Based on these results, we conclude that extracellular, local IGF-1 in the vicinity of synapses is important for maintenance of synaptic vesicle release evoked by low-frequency spikes in hippocampal neurons (Figure 3I).

IGF-1R Blockade Inhibits Basal CA3-CA1 Synaptic Transmission

Having established an essential role of IGF-1R basal activity in regulating synaptic vesicle release in hippocampal cultures, we asked whether acute IGF-1R inhibition modulates basal synaptic transmission in a more intact preparation, acute hippocampal slices. We evoked electrical stimulation in CA3 axons, comprising the Schaffer Collateral (SC) pathway of the hippocampus, and recorded the extracellular field excitatory postsynaptic potentials (fEPSP) in the stratum radiatum or EPSCs using whole-cell patch-clamp technique (Figure 4A). We estimated the effect of AG1024 (1 μM, 30 min) on basal CA3-CA1 synaptic transmission evoked by low-frequency stimulation of 0.1 Hz. AG1024 caused a gradual reduction in the fEPSP amplitude (Figure 4B), resulting in a 47% decrease of the slope of input/output curve (Figure 4C). Moreover, AG1024 caused a robust and pronounced 73% inhibition of the AMPA receptor (AMPA)-mediated EPSC amplitude, measured at ~70 mV (Figure 4D). Contrary to an earlier study in rat hippocampal slices (Ramsey et al., 2005), we did not observe any effect of des-(1-3)IGF-1 (50 ng/ml, 30 min) on CA3-CA1 synaptic transmission in mouse hippocampal slices (Figure S6). Thus, our data indicate that IGF-1Rs are basally active under low-frequency stimulation, contributing to synaptic transmission in CA3-CA1 hippocampal connections.
IGF-1R Regulates Short-Term Synaptic Plasticity under Physiological and Pathological Conditions

Having established a causal relationship between IGF-1R activity and basal synaptic vesicle release, we examined how inhibition of IGF-1R activation affects vesicle release and synaptic transmission evoked by high-frequency spike bursts. Given the inverse relationship between Pr and synaptic facilitation (Dobrunz and Stevens, 1997), we expected an increase in short-term facilitation by IGF-1R blockade. To test this prediction, we examined the effect of AG1024 on short-term plasticity (STP) in hippocampal slices by measuring EPSCs, recorded at −70 mV, during high-frequency spike bursts in CA3-CA1 synaptic connections in acute

Please cite this article in press as: Gazit et al., IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses, Neuron (2016), http://dx.doi.org/10.1016/j.neuron.2015.12.034
hippocampal slices. Application of AG1024 resulted in a decrease of the first EPSC amplitude within the burst, but its effect on the last amplitude was less pronounced (Figure 5A). On average (n = 7), AG1024 profoundly increased short-term synaptic facilitation as estimated by increase in the relative EPSC amplitude within the burst (Figure 5B). Moreover, STP was increased by other types of IGF-1R inhibitors, namely PPP and αiR3 antibody in hippocampal cultures (Figures S3C–S3E). Taken together, these results suggest that basal IGF-1R activity fine-tunes the filter properties of hippocampal synaptic connections by maintaining an appropriate level of facilitation.

Next, we asked how STP is affected by changes in the level of IGF-1R expression. For this purpose, we altered IGF-1R expression in hippocampal cultures using shRNA KD strategy versus overexpression of IGF-1R fused to cyan fluorescent protein (CFP). The magnitude and the sign of short-term presynaptic plasticity (Sburst / Ssingle) was calculated by dividing the total number of vesicles recycled due to bursts by the number of vesicles recycled by a similar number of single spikes in the same population of synapses (Abramov et al., 2009). Sburst / Ssingle > 1 reflects short-term facilitation. IGF-1R KD resulted in a 55% decrease of Ssingle (Figures 5C and 5D), without affecting Sburst (Figures 5C and 5E). As a result, short-term synaptic facilitation was increased by 61% (Figure 5F) and rescued by knock-in of shRNA-resistant IGF-1R (Figure S3F). Conversely, overexpression of IGF-1R (OE) completely abolished synaptic facilitation (Figure 5F) due to 4.4-fold increase in Ssingle (Figures 5C and 5D) and only 1.6-fold increase in Sburst (Figures 5C and 5E). Thus, regulation of IGF-1R expression bi-directionally modulates short-term facilitation in hippocampal synapses. Moreover, optimal level of IGF-1R activation is needed to keep short-term synaptic plasticity in a physiological range.

IGF-1R Blockade Increases mEPSC Frequency

As basal IGF-1R activity maintains spike-evoked synaptic transmission, we asked whether it impacts AP-independent quantal synaptic transmission in a similar manner. Therefore, we measured miniature AMPAR-mediated excitatory postsynaptic currents (mEPSCs) using whole-cell voltage-clamp recordings (Figure 6A). Analysis of the mEPSC recordings revealed that the amplitude of mEPSC was not affected by AG1024 (Figures 6B and 6C). Surprisingly, AG1024 induced a pronounced increase...
in mEPSC frequency (2.4-fold; Figures 6D and 6E). These results support differential regulation of the evoked and miniature synaptic vesicle release (Raingo et al., 2012) by basal IGF-1R activity.

IGF-1R Blockade Enhances Resting [Ca\(^{2+}\)]\(_{\text{cyto}}\) by Inhibiting [Ca\(^{2+}\)]\(_{\text{mito}}\)

To understand the dual role of IGF-1R in regulation of spontaneous and evoked vesicle release, we examined the effects of IGF-1R blockade on the cytosolic Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{\text{cyto}}\)), a critical regulator of vesicle exocytosis. We started from measuring the presynaptic resting [Ca\(^{2+}\)]\(_{\text{cyto}}\) using high-affinity fluorescent calcium indicator Oregon Green 488 BAPTA-1 AM (OGB-1 AM) at presynaptic boutons marked by FM4-64 (Figure 7A). IGF-1R blocker AG1024 gradually increased resting [Ca\(^{2+}\)]\(_{\text{cyto}}\) (Figure 7B). This effect was largely blocked by the chelator of intracellular Ca\(^{2+}\), BAPTA-AM (Figure 7B). We next screened for an intracellular source involved in regulation of resting [Ca\(^{2+}\)]\(_{\text{cyto}}\). Blockade of sarco/endoplasmic reticulum Ca\(^{2+}\) ATPase (SERCA) by thapsigargin or ryanodine receptors by dantrolene did not occlude the effect of AG1024 on resting [Ca\(^{2+}\)]\(_{\text{cyto}}\) (Figure 7C). However, blockade of Ca\(^{2+}\) uptake by the mitochondrial depolarizing agent carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP)
Figure 6. IGFR-1 Blockade Increases mEPSC Frequency

(A) Representative traces of mEPSCs for control and following AG1024 application. The scale bars represent 40 pA, 1 s.

(B) Cumulative histograms of mEPSC amplitudes in control (n = 21) and following AG1024 application (n = 23). (C) Summary of data in (B). The mean of mEPSC amplitude was unaffected by AG1024. (D) Cumulative histogram of mEPSC interevent intervals showing a shift to smaller values after IGFR-1 blockade (the same experiments as in B). (E) Summary of data in (D). The mEPSC frequency is increased 2.5-fold after IGFR-1 blockade (**p < 0.01 and non-significant, ns). The error bars represent SEM.

Wang and Thayer, 2002 increased resting $[Ca^{2+}]_{cyt}$ by ~30% and occluded the effect of AG1024 (Figures 7B and 7C). These results position the mitochondria as a negative regulator of resting $[Ca^{2+}]_{cyt}$ by tonic IGFR-1 activity.

To directly assess the effect of IGFR-1 tone on mitochondrial Ca^{2+} concentration ($[Ca^{2+}]_{mito}$), we transfected hippocampal neurons with plasmids encoding a highly sensitive genetically encoded Ca^{2+} probe GCaMP6m (Chen et al., 2013), efficiently targeted to mitochondria (2mtGCaMP6m; Patron et al., 2014). The 2mtGCaMP6m co-localized with a mitochondrial marker (mCherry-mito) in hippocampal neurons (Figure 7D). Application of AG1024 inhibited resting $[Ca^{2+}]_{mito}$ (Figure 7E) with a similar kinetics to the increase in the resting $[Ca^{2+}]_{cyt}$ (Figure 7B). FCCP reduced resting $[Ca^{2+}]_{mito}$ and occluded the effect of AG1024 on mitochondrial Ca^{2+} (Figure 7F). Importantly, FCCP enhanced mEPSC frequency and occluded the effect of AG1024 without altering the mEPSC amplitude (Figure 7G).

As resting $[Ca^{2+}]_{cyt}$ has been shown to inversely correlate with intracellular ATP levels at ribbon synapses (Weiler et al., 2014), we assessed the effect of IGFR-1 inhibitor on the presynaptic ATP concentration ([ATP]$_{pre}$). Utilizing a genetically encoded FRET-based ATP reporter that employs the ε subunit of the bacterial $F_{0}F_{1}$-ATP synthase (A Team1.03; Imamura et al., 2009) fused to a synaptic vesicle protein synaptophysin 1 (Synp-A Team1.03; Shulman et al., 2015), we monitored E_{m} in the presence of TTX (E_{TTX}) at the presynaptic sites (Figures 7H and 7I). A decrease in E_{m} reflects reduction in [ATP]$_{pre}$ (Shulman et al., 2015). Resting terminals exhibited a robust E_{TTX} of 0.13 ± 0.005 that was not altered by application of either AG1024 or FCCP or (Figure 7J). Moreover, E_{TTX} was not influenced by mitochondrial ATP synthase inhibitor oligomycin A (Oligo; Figure 7K), while reduced by ~40% by glycolysis blocker 2-deoxyglucose (dGlu; Figure 7K).

These results point to the mitochondria as a negative regulator of ATP levels in the absence of spiking activity. Taken together, our data demonstrate that tonic IGFR-1 activation inhibits resting $[Ca^{2+}]_{mito}$ without altering [ATP]$_{pre}$ under miniature synaptic activity. Thus, IGFR-1 tone regulates both resting $[Ca^{2+}]_{mito}$ and miniature vesicle release via mitochondrial Ca^{2+} buffering.

IGFR-1 Blockade Inhibits [ATP]$_{pre}$ without Altering Ca^{2+} _mito during Spiking Activity

Next, we asked whether IGFR-1 activity modulates mitochondrial Ca^{2+} transients evoked by APs. Earlier studies using synthetic cationic calcium indicators were able to directly record mitochondrial Ca^{2+} transients evoked by intense stimulations in neuromuscular junction (NMJ) synapses (David et al., 2003) or by high potassium application in cultured forebrain neurons (White and Reynolds, 1995). However, chemical indicators have major drawbacks such as inefficient targeting, uneven distribution of the dye within mitochondria, and potential toxicity (Pozzan and Rudolf, 2009). To examine whether single spikes trigger mitochondrial Ca^{2+} influx, we used a genetically encoded, efficiently targeted to mitochondria 2mtGCaMP6m probe (Patron et al., 2014) with broad dynamic range and high calcium affinity ($K_{d} = 167$ nM; Chen et al., 2013). Ca^{2+} _mito transients were monitored in response to stimulation of hippocampal neurons by single APs or short bursts (5 APs at 100 Hz). Single APs evoked highly heterogeneous responses in both puncta and filament-like mitochondria, giving an average increase of ~8.3% (Figures 8A–8C). The same mitochondria displayed larger (~33%) average peak amplitude), but still variable responses to bursts (Figures 8A–8C). KD of mitochondrial Ca^{2+} uniporter (MCU), an essential component of Ca^{2+} uptake to mitochondria (Baugman et al., 2011; De Stefani et al., 2011), significantly reduced Ca^{2+} _mito transients in hippocampal axons (Figures 8C and 8D), confirming the specificity of the 2mtGCaMP6m probe. Application of AG1024 did not affect Ca^{2+} _mito transients in response to single or burst stimuli (Figures 8C and 8D).

Since mitochondria is the major source of ATP in neurons (Harris et al., 2012), we next assessed the role of IGFR-1Rs in regulation of [ATP]$_{pre}$ under spiking activity. Using a FRET-based...
reporter of \([\text{ATP}]_{\text{pre}}\), we found that AG1024 caused a 22% reduction in \([\text{ATP}]_{\text{pre}}\) during spontaneous spiking activity (Figure 8E). Reduction of \([\text{ATP}]_{\text{pre}}\) by mitochondrial ATP synthase inhibitor oligomycin or mitochondrial depolarizing agent FCCP occluded the effect of AG1024, indicating that mitochondria mediate the effect of IGF-1R on presynaptic ATP levels (Figure 8E). It is important to note that inhibition of ATP synthase by oligomycin did not alter spike-evoked \([\text{Ca}^{2+}]_{\text{mito}}\) transients (Figures 8C and 8D), while inhibition of \([\text{Ca}^{2+}]_{\text{mito}}\) transients by shMCU did not affect \([\text{ATP}]_{\text{pre}}\) (Figure 8F). Based on these results, we conclude that
IGF-1R blockade inhibits mitochondrial ATP production without altering Ca2+\textsubscript{mito} transients under spike-evoked synaptic activity.

Mitochondrial ATP Mediates IGF1R-Induced Presynaptic Modulation

Finally, we asked whether mitochondrial ATP modulation of evoked presynaptic Ca2+ transients and synaptic vesicle release via IGF-1Rs. AP-evoked presynaptic Ca2+\textsubscript{cyto} transients were measured using OGB-1 AM at functional boutons marked by FM4-64. While AG1024 increased resting [Ca2+]cyto (Figures 7A–7C), it had an opposite effect on the AP-evoked transients, decreasing the total charge transfer by 46% (Figures 9A, 9B, S8A, and S8B). Similar results were observed by preincubation with PPP inhibitor (Figures S8D–S8F). The reduction in AP-evoked Ca2+\textsubscript{cyto} transients by AG1024 was mimicked and occluded by both FCCP and oligomycin (Figures 9A, 9B, S8A, and S8B). It is worth mentioning that oligomycin did not affect resting [Ca2+]cyto, suggesting that reduction in mitochondrial ATP synthesis, but not an increase in resting [Ca2+]cyto, mediates IGF1R-induced inhibition of evoked Ca2+ flux. As a consequence of reduction in the presynaptic Ca2+ flux, both FCCP and oligomycin inhibited AP-evoked vesicle recycling and occluded the presynaptic effect of AG1024 (Figures 9C and 9D). Moreover, co-application of FCCP and oligomycin in hippocampal slices profoundly inhibited basal CA3-CA1 synaptic transmission and enhanced synaptic facilitation, occluding further effect of AG1024 on these parameters (Figures 9E–9G).

Based on these results, we conclude that the IGF-1R tone
maintains AP-evoked presynaptic Ca$^{2+}$ flux and thus synaptic transmission via mitochondria by preserving presynaptic ATP levels (Figure S9).

DISCUSSION

This study examines the role of endogenously active IGF-1Rs in synaptic vesicle release, synaptic transmission, and STP of hippocampal neurons. Our strategy was to study the functional consequences of the pharmacological blockade or genetic KD of IGF-1Rs in hippocampal circuits. We have employed several approaches, including intracellular electrophysiology in CA3-CA1 neuronal connections, imaging of synaptic vesicle recycling, and calcium transients in cytosol and mitochondria, together with a FRET-based approach to monitor IGF-1R signaling and ATP levels at synapses. Our results provide converging evidence that the presynaptic IGF-1Rs are basally active, playing a critical role in the maintenance of ongoing neuronal activity. These results are important for several reasons. First, they demonstrate the feasibility of studying IGF-1R signaling at high spatial resolution of single synapses in live neurons. Second, they show that basal IGF-1R activity is critical for maintaining a proper level of...
synaptic transmission and ongoing spiking activity. Third, they highlight a critical role of mitochondria in synaptic physiology and its regulation by IGF-1R tone. Fourth, they reveal that IGF-1R activation during high-frequency stimulation modulates synaptic transfer function. Finally, the present data also point to the importance of the IGF-1R signaling in hippocampal hyperactivity under pathological conditions such as AD.

IGF-1Rs Are Basally Active in the Vicinity of Hippocampal Synapses
The binding affinity of IGF-1R toward IGF-1 (0.16 nM; Adams et al., 2000) and the physiological range of the extracellular IGF-1 concentrations in the brain (0.14–0.31 nM; Yamaguchi et al., 1990) imply that IGF-1Rs should be basally activated under spontaneous synaptic activity in hippocampal circuits. As IGF-1R activity can be differentially regulated in various sub-cellular compartments, we applied FRET methodology to estimate IGF-1R activation in the vicinity of synapses by monitoring interactions within the IGF-1R homodimers (Kavran et al., 2014). In addition, we monitored local activity of the downstream signaling molecule Akt. The following facts suggest that the presynaptic IGF-1Rs are activated by the extracellular IGF-1: First, activation of the IGF-1R and its downstream signaling can be reduced by pharmacological IGF-1R inhibition or genetic IGF-1R KD, while unaffected by IGF-1 application. Second, KD of IGF-1 ligand reduces both IGF-1R activity and synaptic vesicle exocytosis. Importantly, ectopically applied IGF-1 rescues shIGF1-induced reduction in IGF-1R activity and Pr. These data indicate that the presynaptic IGF-1-Rs are largely occupied by the extracellular IGF-1 during spontaneous synaptic activity. Thus, upregulation of the IGF-1R expression appears to be a more relevant mechanism to augment presynaptic IGF-1R tone.

IGF-1R and Synaptic Function
Temporarily, IGF-1-Rs may act within minutes to modify synaptic function, over hours and days to alter gene expression and neuronal structures, and months to regulate brain growth. While extensive studies demonstrate a key role of IGF-1-Rs in neuronal growth and development, whether IGF-1-Rs directly regulate information processing at short timescales remains obscure. Our experiments demonstrate that blockade of IGF-1-Rs induces an increase in resting Ca\(^{2+}\) levels and spontaneous vesicle release, while inhibiting AP-evoked Ca\(^{2+}\) transients and evoked vesicle release. This suggests that basal IGF-1R activity promotes evoked synaptic transmission, while functions as a suppressor of spontaneous transmission. Originally dismissed as synaptic noise, recent evidence suggests that synapses use physiologically segregated pathways to decode spontaneous and evoked neurotransmission (Atasoy et al., 2008; Peled et al., 2014) and that these two types of transmission could have specialized physiological roles (Ramirez and Kavalali, 2011).

How typical is IGF-1R function among other RTKs expressed in the hippocampus? While both IGF-1-Rs and TrkB receptors (TrkBRS) potentiate evoked excitatory synaptic transmission, their rapid effects are associated with different types of neuronal activity. Brain-derived neurotrophic factor (BDNF) requires presynaptic depolarization in order to efficiently potentiate synaptic strength via TrkBRS (Boulangere 4034; Slutsky et al., 2004) and mediates persistent potentiation induced by theta-bursts (Kang et al., 1997). Moreover, blockade of TrkBRS does not alter either basal synaptic transmission or short-term synaptic plasticity (Figure S7; Kang et al., 1997), indicating that TrkBRS are not activated by basal BDNF levels in hippocampal circuits. These findings suggest that TrkBRS may rapidly regulate synaptic transmission, which is temporally locked to high-frequency discharges of afferent inputs or coincidence detection of pre- and postsynaptic spikes. Conversely, extracellular IGF-1 activates IGF-1-Rs under resting conditions, maintaining basal transmission and ongoing spiking activity in the physiological range, while suppressing background miniature synaptic activity (Figure S9). Thus, two key RTKs—IGF-1-R and TrkB—differentially regulate information processing in hippocampal circuits.

Mitochondrion as a Dual Regulator of Synaptic Vesicle Release
Early studies demonstrate heterogeneous data on the role of mitochondria in regulation of spontaneous synaptic vesicle release: mitochondrial inhibitors produced an increase in the rate of spontaneous synaptic transmission in hippocampal neurons (Scotti et al., 1999) and in the frog NMJ (Alnaes and Raha-mimoff, 1975). However, genetic deletion of mitochondria from synaptic sites of Drosophila NMJ produced a non-robust increase in miniature transmission, despite a 2-fold increase in resting \(\text{Ca}^{2+}\)\(_{\text{cyto}}\) (Verstreken et al., 2005) or an increase in spontaneous transmission in less than half of mutant muscles (Guo et al., 2005). Furthermore, the role of mitochondria in short-term synaptic plasticity also remains controversial: mitochondrial \(\text{Ca}^{2+}\) buffering was implicated in some studies (Bullups and Forsythe, 2002; David et al., 2003; Tang and Zucker, 1997), while mitochondrial ATP production in others (Guo et al., 2005; Verstreken et al., 2005). Thus, differences in the relationships between presynaptic VGCCs, mitochondrial \(\text{Ca}^{2+}\) buffering, and ATP production may underlie heterogeneous impact of mitochondria on synaptic vesicle exocytosis at various types of synapses.

Utilizing recently developed genetically encoded \(\text{Ca}^{2+}\) and ATP sensors, we were able to distinguish between two mitochondrial functions—\(\text{Ca}^{2+}\) buffering and ATP production—at the level of single synapses. We found that presynaptic IGF-1-Rs differentially regulate \(\text{Ca}^{2+}\)\(_{\text{mito}}\) and ATP levels during periods of miniature and spike-evoked vesicle release. On the one hand, IGF-1-R blockade decreases resting \(\text{Ca}^{2+}\)\(_{\text{mito}}\) without altering (ATP)\(_{\text{pre}}\) in the absence of spikes. On the other hand, IGF-1-R blockade lowers (ATP)\(_{\text{pre}}\) without altering Ca\(^{2+}\)\(_{\text{mito}}\) transients during spiking activity. As a result, IGF-1-R tone constrains resting (Ca\(^{2+}\)\(_{\text{cyto}}\)) and spontaneous vesicle release, while maintaining AP-evoked presynaptic Ca\(^{2+}\) transients and Pr during spiking activity. It is worth mentioning that we monitored global ATP and Ca\(^{2+}\) levels at the presynaptic sites. However, local ATP and Ca\(^{2+}\) changes in the vicinity of VGCCs might be much higher due to a close proximity of VGCCs and mitochondria (Rizzuto et al., 2012), thus significantly impacting vesicle exocytosis. ATP may maintain evoked presynaptic Ca\(^{2+}\) transients by stabilizing VGCC and reducing its rundown (Wu et al., 2002) or by regulating membrane depolarization via ATP-sensitive potassium (K\(_{\text{ATP}}\)) channels (Koster et al., 2005). Regardless of the precise molecular mechanism, IGF-1-R tone maintains evoked-to-spontaneous transmission ratio by controlling two separate mitochondrial functions: \(\text{Ca}^{2+}\) buffering and energy supply.
IGF-1R and AD-Associated Synaptic Dysfunctions

The role of IGF-1Rs in neurodegenerative disorders has remained highly controversial. While IGF-1 injections promote Aβ clearance (Carro et al., 2002) and blockade of IGF-1Rs in the chroid plexus exacerbate AD-like pathology, genetic reduction in the IGF-1R protects mice from Aβ-associated proteotoxicity (Cohen et al., 2009; Freude et al., 2009). Our study suggests that IGF-1R overexpression, observed in the hippocampus of APP/PS1 mice (Zhang et al., 2013), triggers presynaptic dysfunctions at the early stage, preceding synaptic loss and Aβ aggregation. Namely, in the IGF-1R-mediated synaptic modulation contributes to augmented basal synaptic transmission and reduced STP in CA3-CA1 hippocampal connections of young APP/PS1 mice. Our results propose that inhibition of IGF-1Rs may reduce AD-associated hippocampal hyperactivity at the early stages of AD progression. It remains to be seen whether IGF-1R inhibition may reverse hippocampal hyperactivity in people who are at risk for AD and AD patients (Bakker et al., 2012; Vossel et al., 2013).

EXPERIMENTAL PROCEDURES

Primary Hippocampal Cultures and Acute Hippocampal Slices

All animal experiments were approved by the Tel Aviv University Committee on Animal Care. Primary cultures of CA3-CA1 hippocampal neurons were prepared from WT mice (BALB/c background) on postnatal days 0-2 as described (Slutsky et al., 2004). Acute hippocampal slices were prepared from 2-month-old BALB/c, APPsw/PS1 double transgenic (Jankowsky et al., 2004), and the corresponding WT (B6C3F1/J background) mice. All animals were kept in a normal light/dark cycle (12 hr/12 hr), three animals per cage. Coronal slices (400 μm for extracellular recordings and 350 μm for intracellular patch recordings) of hippocampus were prepared as described before (Abramov et al., 2009). Slices were transferred to a submerged recovery chamber at the experimental condition was repeated at least in three different mice/batches for each experimental condition. Unpaired two-tailed t tests were used for two-group comparisons. Two-way ANOVA analysis with post hoc Bonferroni’s were used to compare short-term synaptic plasticity during burst of five stimuli under several conditions. Two-way ANOVA analysis with post hoc Bonferroni’s were used to compare number of synapses in imaging experiments (each experimental condition was repeated at least in three different mice/batches of cultures) (*p < 0.05; **p < 0.01; and ***p < 0.001).

Plasmids, Transfection, Infection

Aktor (Cer-FHA1-FOXO-cpVE172) FRET construct (Gao and Zhang, 2008) was prepared from WT mice (BALB/c background) on postnatal days 0–2 as described (Slutsky et al., 2004). Acute hippocampal slices were prepared from 2-month-old BALB/c, APPsw/PS1 double transgenic (Jankowsky et al., 2004), and the corresponding WT (B6C3F1/J background) mice. All animals were kept in a normal light/dark cycle (12 hr/12 hr), three animals per cage. Coronal slices (400 μm for extracellular recordings and 350 μm for intracellular patch recordings) of hippocampus were prepared as described before (Abramov et al., 2009). Slices were transferred to a submerged recovery chamber at room temperature containing oxygenated (95% O2 and 5% CO2) artificial cerebrospinal fluid (ACSF) for 1 hr before the experiment. The ACSF contained, in mM: NaCl, 125; KCl, 2.5; CaCl2, 1.2; MgCl2, 1.2; NaHCO3, 25; NaH2PO4, 1.25; and glucose, 25.

Confocal Imaging in Primary Hippocampal Cultures

The experiments were performed in mature (15-28 days in vitro) cultures. Hippocampal neurons were imaged using a FV1000 spectral Olympus confocal microscope using a 60 x 1.2 NA water-immersion objective. The experiments were conducted at room temperature in extracellular Tyrode solution containing 145 mM NaCl, 3 mM KCl, 15 mM glucose, 10 mM HEPES, 1.2 mM MgCl2, 1.2 mM CaCl2, and pH adjusted to 7.4 with NaOH.

For FM-based imaging and analysis, activity-dependent FM1-43 (10 μM) and FM4-64 (15 μM) styryl dyes were used to estimate basal synaptic vesicle recycling and exocytosis using protocols described previously (Abramov et al., 2009).

For monitoring synaptic cytosolic Ca2+ transients, fluorescent calcium indicator OGB-1 AM was used. For detection of Ca2+ transients in mitochondria, neurons were co-transfected with mGCaMP6m and mCherry-mito.

For FRET imaging and analysis, images were 512 x 512 pixels, with a pixel width of 92-110 nm. Intensity-based FRET imaging and analysis was carried as described before (Laviv et al., 2010).

Electrophysiology

Experiments were performed at room temperature. EPSCs and iEPSCs were recorded in acute hippocampal slices with a glass pipette containing Tyrode solution (1–2 MΩ) from synapses in the CA1 stratum radiatum using a Multi-Clamp 700B amplifier (Molecular Devices). Stimulation of the SC pathway was delivered through a small suction electrode (10–20 μm tip) filled with Tyrode. For mEPSCs recordings in hippocampal cultures, TTX (1 μM), amino-phosphonopentanoate (AP-5; 50 μM), and gabazine (30 μM) were added to Tyrode solution. EPSCs and mEPSCs were recorded using the following intracellular solution: 120 mM Cs-MeSO4, 10 mM HEPES, 10 mM NaCl, 0.5 mM CaCl2, 2 mM MgATP, 0.3 mM NaGTP, 10 mM EGTA, and pH adjusted to 7.25 with NaOH. Recordings with access resistances that exceeded 20 MΩ for evoked EPSCs or 10 MΩ for mEPSCs) or that varied by >20% were excluded from analysis. Serial resistance was not compensated. Data were analyzed using Mini Analysis (Synapsoft) for mEPSCs and in pCLAMP 10 (Molecular Devices) for EPSCs and iEPSCs.

Statistical Analysis

One-way ANOVA analysis with post hoc Bonferroni’s were used to compare several conditions. Two-way ANOVA with post hoc Bonferroni’s were used to compare short-term synaptic plasticity during burst of five stimuli under different conditions. Unpaired two-tailed t tests were used for two-group comparison. Nonparametric Spearman test has been used for correlation analysis. N is designated for the number of neurons in patch clamp experiments, slices in field recordings, and number of synapses in imaging experiments (each experimental condition was repeated at least in three different mice/batches of cultures) (*p < 0.05; **p < 0.01; and ***p < 0.001).

For the detailed description of the procedures, see Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures and nine figures and can be found with this article online at http://dx.doi.org/10.1016/j.neuron.2015.12.034.

AUTHOR CONTRIBUTIONS

Conceptualization, I. Slutsky and N.G.; Methodology, I. Slutsky, N.G., and S.R.; Investigation, N.G., I.V., M.H., E.S., I. Shapiro, M.S., and Y.M.; Writing, I. Slutsky and N.G. with input from all authors; Funding acquisition, I. Slutsky and S.R.; and Supervision, I. Slutsky. This work was performed in partial fulfillment of the requirements for a Ph.D. degree by N.G. at the Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel.

ACKNOWLEDGMENTS

We thank Ehud Cohen, Israel Sekler, Daniel Kanamashri, Rive Sarfstein, and Haim Werner for discussions; Nir Ofir for help with data analysis; Samuel Frere

Neuron 89, 1–15, February 3, 2016 ©2016 The Authors 13
and Hila Milshtein for comments on the manuscript; Yevgeniy Berdichevsky for IGF-1(1-39GGG)-; Daniel Gitler for SypA-Team.103; Diego De Stefani for 2mtGCaMP6m; Israel Seker for mCherry-mito; Fabiana Perocchi for shMCU; and Yoav Ben-Simon for shSrc. This work was supported by the European Research Council starting grant (281403, I. Slutsky), the Legacy Heritage Biomedical Program of the Israel Science Foundation (1195/14, I. Slutsky), Israel Science Foundation (398/13, I. Slutsky), Binational Science Foundation (2013244, I. Slutsky), and the European Research Council (ERC-2013-CoG NeuroMolAnatomy, S.R.). I. Slutsky is grateful to Sheila and Denis Cohen Charitable Trust and Rosetrees Trust of the UK for their support. N.G. is grateful to Sagol School of Neuroscience of Tel Aviv University for the award of doctoral fellowship.

Received: December 13, 2014
Revised: November 19, 2015
Accepted: December 13, 2015
Published: January 21, 2016

REFERENCES

