
CHRISTOPHER S. AHUJA, MICHAEL FEHLINGS

Key Words. Spinal cord injury • Stem cell • Trauma • Biomaterial • Neuroprotection • Neuroregeneration

Abstract

Spinal cord injuries (SCIs) result in devastating lifelong disability for patients and their families. The initial mechanical trauma is followed by a damaging secondary injury cascade involving proapoptotic signaling, ischemia, and inflammatory cell infiltration. Ongoing cellular necrosis releases ATP, DNA, glutamate, and free radicals to create a cytotoxic postinjury milieu. Long-term regeneration of lost or injured networks is further impeded by cystic cavitation and the formation of an inhibitory glial-chondroitin sulfate proteoglycan scar. In this article, we discuss important neuroprotective interventions currently applied in clinical practice, including surgical decompression, blood pressure augmentation, and i.v. methylprednisolone. We then explore exciting translational therapies on the horizon, such as riluzole, minocycline, fibroblast growth factor, magnesium, and hypothermia. Finally, we summarize the key neuroregenerative strategies of the next decade, including glial scar degradation, Rho-ROCK inhibition, cell-based therapies, and novel bioengineered adjuncts. Throughout, we emphasize the need for combinatorial approaches to this multifactorial problem and discuss relevant studies at the forefront of translation. We conclude by providing our perspectives on the future direction of SCI research.

Significance

Spinal cord injuries (SCIs) result in devastating, lifelong disability for patients and their families. This article discusses important neuroprotective interventions currently applied in clinical practice, including surgical decompression, blood pressure augmentation, and i.v. methylprednisolone. Translational therapies on the horizon are summarized, including gliotic scar degradation, Rho-ROCK inhibition, cell-based therapies, and novel bioengineered adjuncts. The need for combinatorial approaches to this multifactorial problem is emphasized, relevant studies at the forefront of translation are discussed, and perspectives on the future direction of SCI research are presented.

Introduction

The Acute Injury and Postinjury Milieu

Traumatic spinal cord injuries affect 1.4 million North Americans, a disproportionate number of whom are younger than 30 years. Direct lifetime costs are staggering, at $1.1 to $4.6 million per patient [1, 2]. The initial mechanical insult is followed by a secondary injury cascade that generates further permanent damage. Promising neuroprotective strategies to mitigate the secondary injury, and neuroregenerative approaches to restore function, are discussed herein.

Acute cell dysfunction and death occur via cell permeabilization and initiation of proapoptotic signaling cascades and because of ischemia due to destruction of the sensitive microvascular supply [3, 4]. Furthermore, disruption of the blood-spinal cord barrier exposes the cord to inflammatory cells, cytokines, and vasoactive peptides [5, 6]. In the subsequent hours, hemorrhage and progressive edema cyclically add to the harsh postinjury milieu. Ongoing cellular necrosis releases ATP, DNA, and K+, which activate microglia to secrete proinflammatory cytokines. As a result, dramatic numbers of macrophages, microglia, and polymorphonuclear leukocytes infiltrate the injury site [7]. Engaged phagocytes generate reactive free radicals and cytotoxic by-products that further contribute to cell death. Moreover, release of glutamate via neurons and reuptake failure by astrocytes lead to excitotoxic injury in nearby neurons [8, 9]. At a systemic level, loss of CNS-mediated sympathetic vascular tone results in profound

©AlphaMed Press 2016

www.StemCellsTM.com
hypotension. Furthermore, impaired local autoregulation makes
the cord particularly susceptible to ongoing postinjury ischemia
[10, 11](Fig. 1). Each step in this injury cascade is an important target
for combinatorial neuroprotective strategies.

Barriers to Recovery

Regeneration after spinal cord injury (SCI) requires targeted axon
growth and remyelination of long tracts. Loss of the cord’s struc-
tural framework, including cistic cavitation, impairs directed
axonal regrowth and free cell migration [12]. In addition to archi-
tectural disruption, uncontrolled reactive astroglisis generates
inhibitory glial scarring by creating a physical barrier of irregular
mesh-like astrocytic processes in the perilesional zone [13]. Extra-
cellular matrix in the glial scar is predominantly composed of chon-
droitin sulfate proteoglycans (CSPGs) [14, 15], tenascin [16, 17],
and neural/glial antigen 2 (NG2) proteoglycans [18, 19], which fur-
ther restrict axonal regeneration and inhibit neurite outgrowth
through membrane tyrosine phosphatase, PTPs [20, 21]. Further-
more, existing myelin- and neuron-related signals neurite out-
growth inhibitor (NOGO) [22], oligodendrocyte myelin glycoprotein,
semaphorin 3A, semaphorin 4D [23], and myelin-associated glycopro-
tein [24] bind to NOGO receptor (NgR) (or neuropilin-1/plexin-A1 for
semaphorin 3A) to activate Rho GTPase and its downstream effector,
Rho-associated protein kinase (ROCK) [21]. Together, these result in
growth cone collapse and potent inhibition of regeneration [20].

In addition to reforming neural circuits, myelination is an im-
portant component of regeneration. Demyelination of axons by
oligodendroglial apoptosis along with minimal oligodendrocyte
precursor cell (OPC) proliferation after injury contribute to poor
functional recovery. Denuded axons lose rapid saltatory conduc-
tion and are particularly vulnerable to nonfunctional electrogene-
sis [25, 26]. Preserving and regenerating functional, myelinated
circuits is key to SCI recovery.

Neuroprotection

Sodium Channel Blockade

Riluzole is a U.S. Food and Drug Administration (FDA)-approved
benzothiazole antiepileptic used in amyotrophic lateral sclerosis
(ALS) [27]. Riluzole selectively blocks tetrodotoxin-sodium chan-
nels associated with injured neurons (Table 1). It also inhibits pre-
synaptic glutamate release and increases reuptake to potentially
mitigate excitotoxicity [28]. Its approval by regulatory bodies and
its demonstrated safety in ALS make it a particularly appealing
drug for translation in SCI. In preclinical studies, treatment with
riluzole has resulted in dramatic sensorimotor improvements
functionally and electrophysiologically [29, 30]. A consortium
(led by senior author M.F. and including AOspine, the North
American Clinical Trials Network, the Rick Hansen Institute, and
the Ontario Neurotrauma Foundation) is conducting a phase II/III randomized controlled trial (NCT01997518) entitled “Riluzole
in Spinal Cord Injury Study” (RISCIS) to assess the effects of riluzole
using the American Spinal Injury Association (ASIA) Impairment
Scale (AIS), Spinal Cord Independence Measure, and brief pain in-
ventory outcomes [31]. The trial is recruiting patients with C4–C8
level injuries and is expected to conclude in December 2018.

Anti-Inflammatory Drugs

Minocycline is a CNS-penetrating tetracycline antibiotic that in-
hibits microglial activation and downregulates proinflammatory
cyclooxygenase-2, tumor necrosis factor-α (TNF-α), and interleukin-1β
(IL-1β). Preclinical studies of acute minocycline treatment showed
decreased inflammatory cell infiltration, reduced cistic cavitation,
and improved behavioral outcomes [32]. A phase II randomized controlled trial (RCT) (n = 52) examining the eff-
ects of 7 days of i.v. minocycline versus placebo demonstrated
safety, stable cerebrospinal fluid (CSF) drug levels, and a trend
toward improved motor scores [33]. These exciting results have
led to the phase III Minocycline in Acute Spinal Cord Injury trial
(NCT01828203) in which 7 days of i.v. minocycline is compared with
placebo in 248 patients. Completion of the trial is expected in
2018 [34].

Methylprednisolone (MPSS) is a synthetic glucocorticoid that
acts on cytoplasmic receptors to upregulate anti-inflammatory
factors and interfere with the actions of proinflammatory cyto-
kines, arachidonic acid metabolites, and adhesion proteins. In an-
imal models, MPSS has also been shown to mitigate oxidative
stress and enhance oligodendrocyte and motor neuron survival
[35]. A series of clinical trials and meta-analyses over the last 3
decades have collectively demonstrated improvements in motor
scores for patients administered i.v. MPSS within 8 hours of injury
[36–38]. Providing MPSS to this subset of patients will be
recommended in the upcoming 2016 AOspine guidelines, de-
veloped by an international and interdisciplinary committee of
expert physicians, allied health workers, patients, and inde-
pendent consultants applying the rigorous Grading of Recom-
mendations Assessment, Development and Evaluation (GRADE)
tool [39–44].

Therapeutic Hypothermia

Therapeutic hypothermia has been successfully used for neuro-
protection in patients after resuscitated cardiac arrest [45] and
neonatal hypoxic-ischemia encephalopathy [46]. Hypothermia
significantly decreases the basal metabolic rate of the CNS and
diminishes the systemic inflammatory response [47]. In SCI, pilot studies of systemic hypothermia have demonstrated
that it may show promise as a neuroprotective intervention
[48]. The Acute Rapid Cooling Therapy for Injuries of the Spinal
Cord (ARCTIC) phase II/III trial, which aims to evaluate the
safety, stable cerebrospinal fluid (CSF) drug levels, and a trend

Surgical Decompression

After injury, progressive edema and hemorrhage generate me-
chanical pressure on the confined spinal cord. Surgical decom-
pression relieves this pressure to mitigate further secondary
injury. The Surgical Timing in Acute Spinal Cord Injury (STASCIS)
trial, published in 2012, was a prospective observational study of
222 patients undergoing early (<24 hours) versus late (>24 hours)
decompression. Patients receiving early surgical interven-
tion were twice as likely to improve by 2 or more AIS grades at
6 months [50]. A prospective Canadian cohort study similarly
demonstrated that a significantly greater proportion of patients
who underwent early decompression improved by two or more
AIS grades [51]. Furthermore, Dvorak et al. reported shorter
lengths of hospital stay after early decompression for patients
with ASIA A (complete) or ASIA B (complete motor; incomplete
sensory) injuries [52]. Early decompression in acute SCI is now a
widely adopted practice that we strongly advocate.
Numerous other neuroprotective approaches have been translated into recently concluded or ongoing clinical trials. Granulocyte colony-stimulating factor (G-CSF) is a signaling glycoprotein that has been shown to enhance the survival of ischemic CNS cells, protect against glutamate-induced apoptosis, and reduce TNF-α and IL-1β expression in vivo [53, 54]. Two phase I/IIa nonrandomized trials have demonstrated improved AIS scores after G-CSF administration, without significant adverse events [55, 56]. A phase III RCT of i.v. G-CSF, the G-CSF-Mediated Spinal Cord Injury Recovery Induction Trial (G-SPIRIT; n = 88) is recruiting patients with acute cervical SCI in Japan. The study began in May 2015 and is expected to conclude in 2018.

Figure 1. Pathophysiology of spinal cord injury in the acute, subacute, and chronic setting. Acute traumatic injury causes cell death through ischemia, release of cytotoxic molecules, initiation of apoptotic cascades, hemorrhage, edema, and infiltration of inflammatory cells. In the subacute phase, cystic cavities begin to coalesce and become surrounded by reactive astrocytes, fibroblasts, and inflammatory cells. Inhibitory proteoglycans are secreted into the extracellular matrix. Degeneration/dieback of damaged and denuded axons occurs. In the intermediate/chronic phase, encompassing most patients, mechanical and chemotactic barriers restrict axon regeneration. Limited remyelination by oligodendrocytes and Schwann cells may portend small functional gains during this period.
Vascular compression, intraluminal thrombosis, loss of autoregulation, and system hypotension contribute to ongoing post-injury cord ischemia. Trials of blood pressure augmentation to reduce ischemia have demonstrated improved ASIA grade outcomes for patients with mean arterial pressures (MAPs) held above 85–90 mm Hg [57]. The American Association of Neurological Surgeons and Congress of Neurological Surgeons provide level III recommendations to maintain MAP for 7 days after injury [58]. Building on this, the Canadian Multicentre CSF Monitoring and Biomarker Study (CAMPER; NCT01279811) is...
recruiting participants to assess the effects of cord perfusion pressure (MAP minus intrathecal CSF pressure) on AIS scores and neuropathic pain inventories. CAMPER will also provide insight into the temporal profiles and prognostic value of CSF biomarkers after SCI [34].

Magnesium is an N-methyl-D-aspartate receptor antagonist with antieccitotoxic and antiapoptotic properties successfully used in the neuroprotection of animals after traumatic brain injury, myocardial infarction, and SCI [53–56, 59]. Sustaining sufficiently high CSF levels of Mg requires an excipient such as polyethylene glycol (PEG). A phase I/II placebo-controlled RCT (n = 40) of AC105 (Acorda Therapeutics, Ardsley, NY, http://www.acorda.com) was started but subsequently discontinued [34].

Basic fibroblast growth factor (bFGF) is a heparin-binding protein involved with wound healing, angiogenesis, embryogenesis, and is in the vitro maintenance of stem cell pluripotency. It has also been shown to decrease oxycyridargenation and excitotoxic cell death in preclinical models of neurodegenerative diseases and SCI [60]. A phase I/II RCT (n = 164) of an FGF analog, SUN13837 (Asubio Pharmaceuticals, Edison, NJ, http://www.asubio.co.jp), was discontinued early [34].

NEUROREGENERATION

The Glial Scar

CSPGs in the Glial Scar

Chondroitinase ABC (ChABC) is a bacterial enzyme shown to effectively degrade CSPGs, including NG2, promoting functional gains in mouse models after intrathecal administration using an osmotic minipump [61, 62]. Evidence also shows that coadministration of ChABC with neural precursor cells enhances transplant survival and remyelination of host axons [63, 64]. More recently, large-scale CSPG digestion by direct lentiviral ChABC gene delivery into rat spinal cords demonstrated reduced cavitation volume and enhanced axon preservation. Treated rats also displayed improved sensorimotor function on behavioral and electrophysiological assessments [65]. ChABC is an exciting therapy for which the optimal modality for delivery remains to be elucidated. Future avenues of research may include exploration of human CNS-specific analogs of ChABC and development of novel, safe, and effective delivery techniques.

Anti-NOGO/RhoA-ROCK

Another promising field of study is the NOGO-A/RhoA-Rock pathway. Neurite outgrowth inhibitor A (NOGO-A) is an integral membrane protein in oligodendrocytes that binds NgR. NgR phosphorylates the small GTPase RhoA, which subsequently activates ROCK to inhibit neurite outgrowth and collapse the growth cone [66]. Blocking the function of myelin protein NOGO-A with NOGO-receptor antagonists, anti-NOGO-A antibodies, or inhibition of downstream RhoA-ROCK has been shown to enhance neurite growth and axonal regeneration in animal studies [67–69]. A phase II clinical trial of a monoclonal NOGO-A antibody is now under way in ALS, the results of which may portend a trial in SCI [70]. Furthermore, VX-210 (Cethrin; BioAxone BioSciences, Cambridge, MA, http://bioaxonoebio.com) is a Rho GTPase antagonist that demonstrated significant motor improvement and no safety concerns in a phase I/IIa trial (NCT00500812) in SCI [71]. A phase IIb trial, supported by Vertex Pharmaceuticals (Boston, MA, http://www.vrtx.com), is expected to begin in the near future to further quantify efficacy and safety. The results of these trials will be important in determining the course of investigation of these pathways as therapeutic approaches for SCI.

Cell-Based Approaches

Cell therapies using pluripotent sources are an exciting strategy based on the grafts’ ability to be pro-oligodendroglialgenic [72, 73], pro-neuronogenic [74], immunomodulatory [75, 76], and/or antiangiotic [77]. Furthermore, transplanted cells may be capable of modifying the microenvironment and regenerating/ remyelinating damaged circuits. However, to successfully use these strategies, we must optimize the cell source, differentiation protocols, and graft survival.

Stem Cell Inc. (Newark, CA, http://www.stemcellsinc.com) is conducting an international phase I/II clinical trial (NCT02163876) of human CNS stem cell injections for cervical SCI that is expected to conclude in 2017. Ongoing follow-up for a similar phase I/II thoracic injury trial (NCT01321333) has demonstrated patient improvement in multiple sensory modalities with no safety concerns thus far [78]. Neuralstem (Germantown, MD, http://www.neuralstem.com) began a phase I safety trial (NCT01772810) at the University of California San Diego of NSI-566 neural stem cell transplants for chronic thoracic SCI in 2014, with expected completion in February 2016. These are important clinical proof-of-concept steps in the path to widespread translation of cell therapies.

Cell Sources

Endogenous neural stem cells may be mobilized from local reservoirs, particularly the ependymal layer of the spinal cord central canal [79]. Techniques are being developed to achieve this using growth factor infusions [80], transplanted hydrogels [81], or electrical fields [82]. In parallel, grafts of exogenous human embryonic- and induced pluripotent stem (iPS)-derived cells are being investigated. Human embryonic stem (ES) cells allow consistent differentiation compared with human iPS cells but present ethical challenges, possible karyotypic instability, and are in limited supply [83, 84]. Additionally, the prospect of an autologous pluripotent cell therapy with induced pluripotent stem cell (iPSC) technology is enticing in SCI, where the immune response is always at the forefront. Human iPSC technology offers a highly translatable and potentially unlimited source of pluripotent cells; however, logistical issues surrounding low reprogramming efficiency and insertion mutagenesis exist with viral derivation [85, 86]. Nonviral iPSC generation, such as using the piggyBac transposon, affords an effective and reproducible alternative [87, 88]. iPSC technology continues to evolve as potential early senescence and the variable yield of neural progeny of iPSC compared with ES cells are investigated [89, 90]. Furthermore, the effect of residual epigenetic memory in DNA methylation and histone modification remains to be fully understood [77, 91].

Several other important cell types are being investigated for SCI, including mesenchymal stem cells (MSCs), olfactory ensheathing cells (OECs), and bone marrow nucleated cells (BMNCs). MSCs are multipotent stromal cells capable of...
differentiating along connective tissue lineages, allowing them to play a key role in tissue repair [92]. They are also capable of potentially modulating the local and systemic immune response [93–95]. In preclinical models, MSCs have been associated with neural tissue sparing, increased levels of prosurvival trophic factors, and neovascularization [96, 97]. Several phase I and II trials of autologous MSCs, transplanted into the parenchyma or intrathecal space, are ongoing worldwide. Two phase III trials have also been registered (NCT02481440, NCT01676441), with results expected in the next 1–2 years [34]. BMNCs are being studied for their similar supportive properties. They have been shown to positively modulate the microenvironment in SCI, possibly mediated by the small fraction (0.01%–0.001%) of MSCs in BMNCs. A recent study of intraparenchymal and intravenous autologous BMNC administration in children with chronic SCI showed no significant adverse events [98]. Further preclinical and clinical work is required to better understand the mechanism of action of BMNCs.

OECs are glia that ensheath olfactory neurons in a manner similar to the way Schwann cells ensheath peripheral axons. They support exposed olfactory cells in the nasal mucosa by phagocytosing bacteria and debris, secreting neurotrophic factors, and facilitating axon regeneration after loss [99, 100]. OECs are harvested from the olfactory bulb or mucosa and, when transplanted into the injured cord, promote remyelination, axonal regeneration, and improve behavioral outcomes [101]. At least 10 studies of patients with chronic SCI treated with OECs have been described (cumulative n = 1,193). A recent meta-analysis found no significant increase in adverse events after OEC transplant; however, high-quality studies are still required to define efficacy [102].

Remyelinating the Injured Cord

Oligodendrocytes are particularly vulnerable to traumatic injury, leaving behind demyelinated, dysfunctional axons. Exogenous intraparenchymal injections of neural precursor cells (NPCs) and OPCs have been shown to produce well-differentiated, myelinating oligodendrocytes in vivo. Moreover, rodents transplanted with human OPCs and NPCs weeks after SCI have shown significant functional recovery [103, 104]. However, differentiation protocols can be complex and provide heterogeneous results. Evolving differentiation protocols include Noggin (bone morphogenetic protein inhibition), SB431542 (downstream Smad inhibition), and Sonic hedgehog [105]. Protocol refinement and better molecular characterization of the cells being generated are critical advancements on the path to definitive translation (Fig. 2).

Axon Regeneration

Human neural stem cells have shown mature neuronal differentiation in animal models with long-distance axonal growth and integrated connectivity with the host CNS [106]. Host axons have been shown to reciprocally connect with transplanted neural stem cells, creating relay circuits that can potentially bridge disrupted tracts [107, 108]. Emerging in vitro and in vivo protocols for generating direct induced and transpluripotent pathway mature neurons hold the potential to rebuild host circuits [109, 110]. However, mechanisms to direct axonal growth and synapse development in functionally targeted areas are lacking. This represents a critical barrier to recovery. Axon path-finding strategies have predominantly focused on the role of chemotactic and adhesive cues in guiding the neuronal growth cone [111]. In vitro and in vivo studies demonstrating the importance of cell adhesion molecules, including nerve growth factor-inducible large external glycoprotein [112], neural cell adhesion molecule [112, 113], transient axonal glycoprotein-1 (TAG-1) [114], calcium-dependent cadherins [115], semaphorin 3A [23, 116], and netrin [117] have advanced our understanding of embryonic development of the CNS [111]. Further discovery and exploitation of the underlying molecular pathways may yield potent adjunctive methods of generating functional neuronal circuits through chemotactic signaling of transplanted cells (Fig. 2).

Improving Cell Survival

Transplanted xenograft cells have poor survival rates in animal SCI models. Continued progress in the field will require improvements in cell survival by modifying cells, the injured cord milieu, and the host animals. Growth factors (platelet-derived growth factor, FGF2, and epidermal growth factor) and anti-inflammatory agents (minocycline) have been shown to improve cell survival but can be logistically challenging in animal models (e.g., osmotic minipumps) [118, 119]. Alternate interventions to increase growth factor levels or decrease the immune response will be required to continue improving cell survival. One approach is the genetic modification of grafted cells to inducibly express the necessary proteins. Fibroblasts and mesenchymal stem cells have been successfully modified to secrete bFGF [120], hepatocyte growth factor [121], NT3 [122, 123], brain-derived neurotrophic factor (BDNF) [122, 124], and glial cell-derived neurotrophic factor (GDNF) [125, 126] in vivo. Safe and efficient methods of transducing human ES/iPS cells in a similar fashion are being studied (Fig. 2).

Other strategies of interest are the development of bioengineered cell transplant vehicles to gradually deliver signaling proteins either spontaneously or after an exogenus stimulus. This has been achieved with success with fibrin matrices [106], hyaluronan/methylcellulose [127], and other bioengineered materials. Growth factor-secreting hydrogels have been shown to decrease cavity volume and improve behavioral measures after injury. Furthermore, hydrogels can be used to mitigate immunorejection of transplanted cells through encapsulation to form a temporary physical barrier to the immune response [128, 129].

An often overlooked but critical additional method is the mobilization of endogenous growth factors through noninvasive interventions such as physical rehabilitation. While rehabilitation is an integral component of the care provided to patients with SCI, it is often overlooked in preclinical trials. Host animals that undergo treadmill locomotor training postinjury show significantly enhanced NPC survival mediated by insulin-like growth factor-1 signaling [130]. This finding highlights the necessity of adjunctive therapies in SCI and underscores the importance of reciprocal knowledge exchange between the clinical and preclinical worlds.

Biomaterials

Drug-Eluting Hydrogels and Self-Assembling Peptides

Transplantable hydrogel polymers are an attractive medium to fill cavitation defects. Their porous construction allows cell migration and nutrient diffusion [131]. Hydrogels can also function
as cell-delivery vehicles to improve graft survival and migration [132, 133]. Furthermore, engineered needle-injectable hydrogels can promote cell differentiation and form a barrier against the immune response. Multiple biomaterial substrates have been evaluated in SCI, including agarose [134, 135], collagen [136], hyaluronan/methylcellulose [137], fibrin [138], and alginate [139], all of which have shown promising results in supporting regeneration. Further modification to integrate growth factors [140] or immunomodulatory drugs [141] provides additional high-yield combinatorial opportunities for exploration (Fig. 2). This has been successfully performed for BDNF [142], NT-3 [143], and GDNF [139].

Synthetic self-assembling peptide (SAP) hydrogels are a unique class of engineered proteins that can associate into highly stable organized tissue scaffolds in situ [144, 145]. While liquid at ambient temperature, when exposed to the mammalian body, they begin to assemble into a biocompatible nanofiber structure similar to native extracellular matrix [146]. SAPs grafted into injured cords have demonstrated reduced astrogliosis and cell death with enhanced axonal regeneration [147]. Furthermore, cotransplants with neural stem cells have been shown to promote injury repair and functional recovery of the forelimbs in cervical SCI [148]. The technology behind drug-eluting hydrogels and SAPs is rapidly evolving and we foresee this becoming an increasingly important adjunct to cell-based therapies moving forward.

FUTURE DIRECTIONS

The multifactorial nature of SCI and neural repair necessitates a combinatorial approach if we are to translate experimental therapeutics into significant functional gains for patients. While acute neuroprotective interventions are crucial to mitigate secondary injury, therapeutic neuroregenerative approaches are required to help the millions of patients living with chronic postinjury disability. Pluripotent cell-based therapies will play a central role but require further advancements in genetic engineering, biomaterials, and a deeper understanding of SCI at a molecular level. Furthermore, the development of less-toxic immunosuppressive drugs or consistent methods of generating autologous iPS cells is an important milestone on the path to translation. Careful targeting of these treatment strategies to individual subsets of patients is an important avenue of further investigation requiring a better understanding of injury heterogeneity. In defining these groups, a critical need exists for validated biomarkers of injury severity and recovery trajectory through magnetic resonance imaging [149] and serum/CSF biochemistry [150].
Successful future therapies will require these and other synergistic approaches to address the persistent barriers to regeneration, including the glial scar, the loss of structural framework, and immunorejection. Ongoing clinical trials underscore the excitement and progress we have made in investigating therapeutic approaches to SCI and highlight the importance of the work being done by thousands of scientists in regenerative medicine.

ACKNOWLEDGMENTS

M.F. is supported by the Gerald and Tootsie Halbert Chair in Neural Repair and Regeneration and the DeZwirik Family Foundation.

REFERENCES

42. Guyatt GH, Oxman AD, Vist GE et al. GRADE: An emerging consensus on rating

AUTHOR CONTRIBUTIONS

C.S.A.: manuscript writing; M.F.: manuscript writing, final approval of manuscript.

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

M.F. is an investigator in the Stem Cells Inc. phase I/II clinical trial (NCT02163876) of human CNS stem cell injections for cervical SCI and the lead investigator in the upcoming phase IIb trial, supported by Vertex Pharmaceuticals Inc. The other author indicated no potential conflicts of interest.
quality of evidence and strength of recommend-
tober 15, 2015.
52 Dvorak MFNV, Noonan VK, Fallah N et al. The influence of time from injury to surgery on motor recovery and length of hospital stay in acute traumatic spinal cord injury: an observa-
56 Kamiya K, Koda M, Furuya T et al. Neuro-
protective therapy with granulocyte colony-stimulating factor in acute spinal cord injury: A comparison with high-dose methylpredniso-
lone as a historical control. Eur Spine J 2015;24:963–967.
60 Siddiqui AM, Khazaee M, Fehlings MG. Translating mechanisms of neuroprotection, re-
61 Bradbury ED, Moon LDF, Popat RJ et al. Chondroitinase ABC promotes functional recover-
62 Jones LL, Sajed D, Tuszyński MH. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: A balance of permissiveness and in-
64 Carter LM, McMahon SB, Bradbury EJ. Delayed treatment with chondroitinase ABC re-
verses chronic atrophy of rubrospinal neurons following spinal cord injury. Exp Neurol 2011;228:149–156.
65 Bartus K, James ND, Diangelos A et al. Large-scale chondroitin sulfate proteoglycan di-
gestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J Neurosci 2014;34:4822–4836.
66 Niederöst B, Oertle T, Fritsche J et al. Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antago-
68 Gonzenbach RR, Schwab ME. Inhibi-
70 Meininguer V, Pradat P-F, Corse A et al. Safety, pharmacokinetic, and functional effects of the Nogo-a monoclonal antibody in amy-
lopathic lateral sclerosis: A randomized, first-in-
73 Curt AC, Fehlings M, Huhn S. Phase I/II clinical trial of HuCNS-SC cells in chronic thorac-
76 Akamara RM, Lebkowski J, Au M et al. Immunological properties of human embry-
one stem cell-derived oligodendrocyte pro-
genitor cells. J Neuroimmunol 2007;192:
134–144.
77 Jäderstad J, Jäderstad LM, Li et al. Com-
Neuroregeneration and Neuroprotection in SCI

93 Swartzlander MD, Blakney AK, Amer LD et al. Immunomodulation by mesenchymal stem cells combats the foreign body response to cell-laden synthetic hydrogels. Biomaterials 2010;31:7046–7054.

119 Tobias CA, Shumsky JS, Shibata M et al. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol 2003;184:97–113.

